

August 15, 2011

Mr. Roy Crossland START Project Officer U.S. Environmental Protection Agency, Region 7 901 North 5th Street Kansas City, Kansas 66101

Subject:

Removal Site Evaluation and Preliminary Assessment Rotary Drilling Supply Site, Inc., Crystal City, Missouri

CERCLIS ID No: MON000706201

U.S. EPA Region 7 START, Contract No. EP-S7-06-01, Task Order No. 0214 Task Monitors: Jamie Bernard-Drakey, EPA Site Assessment Manager

Jim Silver, On-Scene Coordinator

Dear Mr. Crossland:

Tetra Tech EM Inc. is submitting the enclosed Removal Site Evaluation/Preliminary Assessment Report for the above-referenced facility, incorporating comments from the EPA Task Monitors. If you have any questions or comments regarding this submittal, please contact the project manager at (636) 387-2174.

Sincerely,

Ann Marie Pohlman

START Project Manager

Ted Faile, PG, CHMJ

START Program Manager

Enclosures

RCRA

Tetra Tech EM Inc. 415 Oak Street, Kansas City, MO 64106 Tel 816.412.1741 Fax 816.410.1748 www.tetratech.com

REMOVAL SITE EVALUATION/PRELIMINARY ASSESSMENT ROTARY DRILLING SUPPLY SITE, INC. CRYSTAL CITY, MISSOURI CERCLIS ID No. MON000706201

Superfund Technical Assessment and Response Team (START) 3

Contract No. EP-S7-06-01, Task Order No. 0214

Prepared For:

U.S. Environmental Protection Agency Region 7 901 North 5th Street Kansas City, Kansas 66101

August 15, 2011

Prepared By:

Tetra Tech EM Inc. 415 Oak St. Kansas City, Missouri 64106 (816) 412-1741

CONTENTS

Section	<u>on</u>			<u>Page</u>			
1.0	INTR	ODUCT	ION	1			
2.0	SITE	DESCRI	PTION	1			
	2.1	SITE I	LOCATION	1			
	2.2		DESCRIPTION	2			
	2.3	OPER	ATIONAL HISTORY, PREVIOUS INVESTIGATIONS, AND WASTE				
			ACTERISTICS				
	2.4	REGU	LATORY INVOLVEMENT	2			
		2.4.1	U.S. Army Corps of Engineers	3			
		2.4.2	Missouri Department of Natural Resources	3			
		2.4.3	U.S. Environmental Protection Agency	3			
3.0	INVE	ESTIGAT	TVE EFFORTS – RSE/PA SAMPLING	4			
	3.1	SOUR	CE SAMPLING	4			
	3.2	SURF.	ACE WATER AND SEDIMENT SAMPLING	8			
4.0	HAZ	HAZARD RANKING SYSTEM FACTORS					
	4.1	SOUR	CES OF CONTAMINATION	14			
	4.2	GROU	JNDWATER PATHWAY	14			
		4.2.1	Hydrogeological Setting				
		4.2.2	Groundwater Targets	15			
		4.2.3	Groundwater Pathway Conclusions	16			
	4.3	SURF	ACE WATER PATHWAY	17			
		4.3.1	Hydrological Setting	17			
		4.3.2	Surface Water Targets	18			
		4.3.3	Surface Water Pathway Conclusions	19			
	4.4	SOIL	EXPOSURE AND AIR PATHWAYS	20			
5.0	EME	RGENCY	RESPONSE CONSIDERATIONS	20			
6.0	SUM	MARY		21			
	6.1	REMO	OVAL CONSIDERATIONS	22			
	6.2	PRE-R	REMEDIAL CONSIDERATIONS	22			
7.0	REFE	ERENCE	S	23			

CONTENTS (Continued)

APPENDICES

<u>Appen</u>	<u>aix</u>
A	FIGURES
В	PHOTOGRAPHIC LOG
C	FIELD LOGBOOK
D	GEOPROBE® BORING LOGS
Е	FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS
F	ANALYTICAL RESULTS
G	TABLES
Н	REMOVAL SITE EVALUATION FORM

TABLES

<u>Table</u>		Page
1	SUBSURFACE SAMPLE SUMMARY (FILL MATERIAL)	6
2	SURFACE SAMPLE SUMMARY (FILL MATERIAL)	7
3	SURFACE WATER AND SEDIMENT SAMPLE SUMMARY	9

1.0 INTRODUCTION

The Tetra Tech EM Inc. (Tetra Tech) Region 7 Superfund Technical Assessment and Response Team (START) was tasked by the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Division to conduct an integrated Removal Site Evaluation/Preliminary Assessment (RSE/PA) at the Rotary Drilling Supply, Inc., (RDS) site in Crystal City, Missouri. The project was assigned under START Contract No. EP-S7-06-01, Task Order No. 0214. The purpose of the RSE was to determine if a release of a hazardous substance, pollutant, or contaminant has occurred at the site that warrants a removal action. The purpose of the PA was to assess the relative threat to human health and the environment associated with actual or potential releases of hazardous substances at the site.

2.0 SITE DESCRIPTION

The location, description, operational history, previous investigations, and waste characteristics associated with the RDS facility, along with a summary of prior regulatory involvement, are discussed below.

2.1 SITE LOCATION

RDS is located at 1150 South Truman Boulevard in Crystal City, Missouri. The site is included on the 1982 Festus, Missouri, North and West U.S. Geological Survey (USGS) 15-minute topographic map (USGS 1982) (see Appendix A, Figure 1). The site lies within a "civil colony," defined as an area of land to which title was conferred by a predecessor government and confirmed by the U.S. Government after the territory in which it is situated was acquired by the United States (National Atlas 2010). The approximate geographic coordinates for the central portion of the site are 38.206211 degrees north latitude and 90.392061 degrees west longitude.

The site is located in the southern portion of Crystal City, and can be accessed from South Truman Boulevard, also known as Highway 61/67, from either the north or the south. Based on the USGS topographic map, the RDS property is about 400 feet above mean sea level (amsl). The topographic gradient of the site area is generally to the east-southeast toward Plattin Creek, which drains into the Mississippi River approximately 2.4 miles northeast of the site. A railroad track is on the east side of the property, and a tributary to Plattin Creek is on the south side. The site is located within the 100-year floodplain of the Mississippi River (Federal Emergency Management Agency [FEMA] 2011). The site encompasses approximately 13 acres, with various fill materials covering approximately 10 to 12 acres.

2.2 SITE DESCRIPTION

The 22 geologic formations exposed in Jefferson County range in age from Cambrian to Pennsylvanian (USDA 2011). The Cambrian rocks that crop out are composed of massive dolostone. The Ordovician system is exposed in almost three-quarters of the county; those rocks have had a significant role in the economic growth and development of the area. Quarries in limestone and dolostone have furnished building stones, aggregate, and cement for bridges, highways, and buildings. Sand mined in the St. Peter Sandstone is used by the glass industry (USDA 2011). The Devonian system is represented by a narrow band of sandstone, shale, and limestone that crosses the northeastern part of the county. The Mississippian system consists primarily of limestone and cherty limestone. The Pennsylvanian system consists of reddish-brown sandstone and bluish-gray to purple shale (USDA 2011).

Geologic units consist of flat to gently dipping bedrock dominated by dolostone, sandstone, and limestone formations. A slight regional dip of 1 to 2 degrees to the northeast has been altered by northwest-southeast trending folds and faults, where bedrock dip is over 10 degrees (USDA 2011).

Jefferson County is divided into seven physiographic regions. The regions have landscape shapes controlled by separate geologic units with variable bedding thickness, weatherability, and time of deposition. They vary from narrow ridgetops with steep hills and narrow valleys to gently rolling uplands. The highest point in the county is on Vinegar Hill, at 1,060 feet amsl. The lowest point is in the Mississippi River bottom, at 385 feet amsl (USDA 2011).

2.3 OPERATIONAL HISTORY, PREVIOUS INVESTIGATIONS, AND WASTE CHARACTERISTICS

The 13-acre facility parcel is currently owned by RDS. The business primarily performs sales and service for rotadrills and compressors. Coal fly ash generated by Ameren power plants, sandbags from the Midwest flood of 1993, and other fill materials have been deposited at the site (U.S. Army Corps of Engineers [USACE] 2010). No previous environmental investigations are known to have occurred on site. According to information in an EPA Region 7 Clean Water Act (CWA) Enforcement Program (WENF) trip report, the owner wants to develop the property for commercial use, including plans to lease or sell 2 acres of land for construction of a bank building (EPA 2010).

2.4 REGULATORY INVOLVEMENT

The following is a summary of prior regulatory involvement at the site.

2.4.1 U.S. Army Corps of Engineers

On March 1, 2010, USACE issued a Notice of Violation (NOV) to the owner. The notice stated that placement of the fill material on the property required a Section 404 Permit, and that Section 404 of the CWA had been violated (USACE 2010). The notice also stated that a review of resource maps and aerial photographs indicated the area contained a stream, forested wetland, and lake/wetland habitat, all of which are waters of the United States (USACE 2010).

2.4.2 Missouri Department of Natural Resources

A letter from the Missouri Department of Natural Resources (MDNR) dated June 30, 2010, was issued to the property owner, regarding "Improper Placement of Fly Ash Fill in a Wetland" (MDNR 2010a). The letter stated that on June 11, 2010, a site visit and meeting at the RDS property had been attended by representatives from MDNR, Ameren, and Mineral Resources Technologies (MRT), as well as the property owner. The letter also stated that MRT had provided the fly ash without cost to the property owner and paid for hauling the material to the site. Heavy equipment had been contracted by the property owner to distribute the material across the property and level it to its current elevation (MDNR 2010a). The letter also stated that fly ash is not considered "clean fill" under the Solid Waste Management Law and Regulation. The MDNR Solid Waste Management Program (SWMP) regulates fly ash as a solid waste (MDNR 2010a). The fly ash is considered a regulated solid waste and may be placed only in a permitted landfill or handled under the conditions of a properly managed beneficial use exemption or other permit exemption (MDNR 2010a).

2.4.3 U.S. Environmental Protection Agency

On April 15, 2010, personnel from USACE and the EPA Region 7 CWA Enforcement Program met with the owner at the site to discuss EPA's involvement in the matter regarding the fill material. According to USACE, fill material had been brought to the site after the flood of 1993, and about 5.8 acres of wetland had been filled since 2003.

The most recent fill material (fly ash) had originated from Ameren, a nearby coal-fired power plant. According to information in the WENF trip report, new fill material was observed along the north, east, and south perimeters of the property; the fill material was approximately 30 feet high (EPA 2010). The RDS site was entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) database in October 2010 as ID number MON000706201.

3.0 INVESTIGATIVE EFFORTS – RSE/PA SAMPLING

Section 3.0 discusses the current RSE/PA field sampling and associated quality assurance (QA)/quality control (QC) activities performed at the RDS facility.

The general objectives of the RSE/PA were to determine whether any threats to human health or the environment exist as a result of releases to soil and surface water, and to assess the need for a removal action. A site-specific Quality Assurance Project Plan (QAPP) in support of the RSE/PA activities had been approved by EPA prior to conducting the sampling (Tetra Tech 2010). Field activities were conducted in accordance with the approved QAPP, except where noted in this report.

START Team Members (STM) Ann Marie Pohlman, Christy Engemann, and Cosmo Canacari (Geoprobe® operator) conducted RSE/PA sampling activities on February 14 and 15, 2011. START contacted several landowners and obtained access to collect sediment and surface water samples from their properties prior to initiating the field activities.

Along with surface water and sediment sampling, field activities included sampling surface and subsurface fill material, consisting mostly of the coal fly ash. Subsurface sampling was conducted using Geoprobe[®] direct-push technology (DPT) equipment.

A Site Layout Map is included as Figure 2 in Appendix A. Photographs documenting site activities are included in Appendix B, and sampling activities were recorded in a site logbook, a copy of which is included in Appendix C. Geoprobe[®] boring logs are included in Appendix D. Samples for analytical services request (ASR) 5198 were shipped overnight on February 16, 2011, via Federal Express to the EPA Region 7 laboratory. Field sheets and chain-of-custody records are included in Appendix E, and analytical results are included in Appendix F.

3.1 SOURCE SAMPLING

A biased or judgmental sampling scheme was followed to select source sampling locations at the RDS facility, based on site reconnaissance observations and background information about the facility. Sampling locations are illustrated on Figure 3 in Appendix A. On February 14, 2011, START collected six subsurface and three surface samples of fly ash fill material at the site. The subsurface samples were collected using a Geoprobe® DPT apparatus, and the surface samples were collected using a stainless steel garden trowel.

4

The Geoprobe® boring samples were collected at various depths ranging from 0 to 26 feet below ground surface (bgs), and contained visibly different layers of fill material. Most of the samples consisted of sandy, rocky, tan-colored fly ash. Other samples consisted of dark brown, fine-grained fill material, gravel, clay, sand, and shot rock. By use of a stainless steel garden trowel, surface samples were collected from 0 to 2 inches bgs at two locations, and one sample was collected from a small fly ash pile (see Tables 1 and 2).

For each sample, three 8-ounce (oz) jars were filled. The samples were placed into a cooler, where they were stored at or below 4 degrees Celsius (°C), pending submittal to the EPA Region 7 laboratory. The nine fly ash samples were submitted to the EPA Region 7 laboratory to be analyzed for Target Analyte List (TAL) metals (including mercury & boron), leachable metals according to the Toxicity Characteristic Leaching Procedure (TCLP), and polycyclic aromatic hydrocarbons (PAH).

Analytical Data Summary

Metals – Sample concentrations were compared to EPA Regional Screening Levels (RSL) for industrial and residential soils, and to Superfund Chemical Data Matrix (SCDM) benchmarks. Metals concentrations were also compared to available U.S. Geological Survey (USGS) county mean concentrations (USGS 2010). For those analytes where mean concentrations were provided by USGS, one or more source samples exceeded those concentrations for all elements except lead and manganese (See Table G-1 in Appendix G).

Arsenic was detected in all source samples collected at concentrations ranging from 3.8 mg/kg (RDS-SB-1) to 56.2 mg/kg (RDS-SB-6). Eight of the nine samples collected exceeded the Jefferson County mean arsenic concentration of 6.292 mg/kg. Arsenic exceeded the EPA RSLs for industrial and residential soils, and the SCDM cancer risk screening concentration (CR), in all samples.

Sample RDS-SB-4 collected from a depth of 24 to 26 feet bgs contained the highest concentrations of aluminum (62,000 mg/kg), beryllium (4.0 mg/kg), boron (590 mg/kg), chromium (59.1 mg/kg), cobalt (19.3 mg/kg), copper (142 mg/kg), manganese (223 mg/kg), nickel (50.7 mg/kg), and vanadium (167 mg/kg). Sample RDS-SB-6 collected from a depth of 13 to 15 feet bgs contained the highest concentrations of arsenic (56.2 mg/kg), cadmium (0.89 J mg/kg), lead (58.9 mg/kg), and zinc (137 mg/kg). Sample RDS-SB-5 collected from a depth of 0 to 2 feet bgs contained the highest concentrations of barium (4,350 mg/kg), and mercury (0.35 J mg/kg). The highest selenium concentration of 6.0 mg/kg was reported in sample RDS-SB-2 collected from a depth of 10 to 12 feet bgs. In general, the lowest concentrations for most analytes was in RDS-SB-1 collected from a depth of 0 to 2 feet bgs.

TABLE 1

SUBSURFACE SAMPLE SUMMARY (FILL MATERIAL) **RDS SITE** FEBRUARY 2011

Briefales							
	#FEEDMARK		6 di maga				
RDS-SB-1	5198-1	West-central part of the source pile; refusal at 4 feet bgs	38.20679	90.39288	2-14-11	0-2	09:37
RDS-SB-2	5198-2	175 feet east of RDS-SB-1	38.20677	90.39229	2-14-11	10-12	10:15
RDS-SB-3	5198-3	175 feet east of RDS-SB-2	38.20671	90.39163	2-14-11	7-9	11:05
RDS-SB-4	5198-4	East-central part of the source pile	38.20656	90.39117	2-14-11	24-26	12:10
RDS-SB-5	5198-5	South-central part of the source pile, near equipment	38.20624	90.39207	2-14-11	0-2	12:45
RDS-SB-6	5198-6	North-central part of the source pile, near smaller piles	38.20701	90.39195	2-14-11	13-15	13:20

Notes:

bgs

EPA

Below ground surface U.S. Environmental Protection Agency Feet

RDS Rotary Drilling Supply Soil boring

SB

TABLE 2

SURFACE SAMPLE SUMMARY (FILL MATERIAL) **RDS SITE** FEBRUARY 2011

						*
RDS-SF-1	5198-7	Small pile on north end of the property	38.20696	90.39188	2-14-11	13:39
RDS-SF-2	5198-8	Southeast side of property	38.20606	90.39151	2-14-11	13:50
RDS-SF-3	5198-9	West side of property	38.20658	90.39273	2-14-11	14:00

Notes:

U.S. Environmental Protection Agency Rotary Drilling Supply **EPA**

RDS

TCLP Metals – None of the samples exceeded any TCLP regulatory levels for metals (see Table G-2 in Appendix G). Based on the sampling conducted, the fill material does not classify as a RCRA characteristic waste for toxicity.

PAHs – All source samples were submitted for PAH analyses. No PAHs were detected at or above the reporting limits. Therefore, PAHs do not appear to be at levels of concern in the surface and subsurface fill materials.

3.2 SURFACE WATER AND SEDIMENT SAMPLING

During this investigation, surface water (SW) and collocated sediment (SD) samples were collected from four locations on the site property and two locations on adjacent properties. Table 3 lists these samples; the sample locations are illustrated in Figure 3 in Appendix A.

Four sample locations (RDS-SW/SD-3, RDS-SW/SD-4, RDS-SW/SD-5, and RDS-SW/SD-6) were selected along a small drainage pathway on the south and southeast sides of the property from which drainage eventually flows into Plattin Creek. The drainage pathway was just a few feet wide and contained less than a foot of water during sampling. One sample location (RDS-SW/SD-1) was located at the Elks' Lodge pond (Willers Lake), near the northeastern side of the property. Another sample location (RDS-SW/SD-2) was at an adjacent property on the eastern side of the railroad tracks. A field duplicate sample (RDS-SW/SD-2-FD) was also collected. Three background samples (RDS-SW/SD-7, RDS-SW/SD-8, and RDS-SW/SD-9) were collected upstream of the site at a pond on the western side of Highway 61/67, which is approximately 1/8 mile southwest of the property (see Figure 3). Because these samples were collected upstream of the facility, they are not likely affected by the source.

Surface water samples were collected by dipping a 1-liter container into the water and transferring the water to the requisite sample containers. All water samples were analyzed for TAL metals (including mercury and boron); those samples were collected in 1-liter cubitainers and preserved with nitric acid (HNO₃) to a pH <2. Three water samples (RDS-SW-1, RDS-SW-3, and RDS-SW-5) were also analyzed for PAHs; those were collected in 80-oz amber glass jugs.

TABLE 3

SURFACE WATER AND SEDIMENT SAMPLE SUMMARY

RDS SITE FEBRUARY 2011

			No. delegation	4	TOTAL BUILD	
119 0	Zue .	Elks' Lodge pond (Willers Lake) near the	**************************************	Politica .		
RDS-SW-1	5198-101	northeastern part of the property	38.20676	90.39066	2/15/11	11:18
RDS-SW-2	5198-104	East side of railroad tracks by a culvert	38.20551	90.39093	2/15/11	12:55
RDS-SW-2-FD	5198-104-FD		20.20546	00 20116	2/15/11	13:10
RDS-SW-3	5198-102	West side of railroad tracks by a culvert	38.20546	90.39116	2/15/11	13:10
RDS-SW-4	5198-105	West side of railroad tracks (farthest north sampling point, except for Elks' Lodge pond)	38.20575	90.39108	2/15/11	13:30
RDS-SW-5	5198-103	Southeast side of pile	38.20556	90.39127	2/15/11	13:40
RDS-SW-6	5198-106	South side of pile, in standing water	38.20550	90.39191	2/15/11	13:50
RDS-SW-7	5198-107	Background sample from pond	38.20537	90.39525	2/15/11	14:20
RDS-SW-8	5198-108	Background sample from pond	38.20523	90.39478	2/15/11	14:30
RDS-SW-9	5198-109	Background sample from pond	38.20481	90.39478	2/15/11	14:45
1911.04		rich and Strippeni Strippen.	100		and the	12.35
RDS-SD-1	5198-16	Same as RDS-SW-1	38.20676	90.39066	2/15/11	11:18
RDS-SD-2	5198-10	Same as RDS-SW-2 and RDS-SW-2-FD	38.20551	90.39093	2/15/11	12:55
RDS-SD-2-FD	5198-10-FD					
RDS-SD-3	5198-17	Same as RDS-SW-3	38.20546	90.39116	2/15/11	13:10
RDS-SD-4	5198-11	Same as RDS-SW-4	38.20575	90.39108	2/15/11	13:30
RDS-SD-5	5198-18	Same as RDS-SW-5	38.20556	90.39127	2/15/11	13:40
RDS-SD-6	5198-12	Same as RDS-SW-6	38.20550	90.39191	2/15/11	13:50
RDS-SD-7	5198-13	Same as RDS-SW-7-Background	38.20537	90.39525	2/15/11	14:20
RDS-SD-8	5198-14	Same as RDS-SW-8-Background	38.20523	90.39478	2/15/11	14:30
RDS-SD-9	5198-15	Same as RDS-SW-9-Background	38.20481	90.39478	2/15/11	14:45
The second secon		GA/OC Samples	10-7-54 Wiley			974
RDS-RB	5198-111	Rinsate Sample	NA	NA	2/14/11	13:18
RDS-112-FB	5198-112-FB	Field Blank	NA	NA	2/15/11	15:00

Notes:

Sediment samples were collected from the edge of the drainage pathway and adjacent properties following collection of the surface water sample. These samples were collected with a stainless steel garden trowel, which was decontaminated between locations. All sediment samples were collected in 8-oz. jars and analyzed for TAL metals (including mercury and boron). Three sediment samples collected in additional 8-oz. jars (RDS-SD-1, RDS-SD-3, and RDS-SD-5) were also analyzed for PAHs. All samples were placed into a cooler, where they were stored at or below 4 °C, pending submittal to the EPA Region 7 laboratory.

Analytical Data Summary - Surface Water

Metals – Table G-3 in Appendix G presents a summary of the metals detected in the surface water samples. Results were compared to environmental benchmarks including aquatic benchmarks for fresh water from SCDM and to the concentrations of the background samples RDS-SW-7, RDS-SW-8, and RDS-SW-9, which were collected from a nearby pond on the western side of Highway 61/67.

Arsenic was detected in samples RDS-SW-3 and RDW-SW-4 at levels that exceeded the detection limits of the background samples. The detection limit was 1.0 microgram per liter (μ g/L) for all three background samples. Arsenic was reported at 4.0 μ g/L in sample RDS-SW-3 and 29.7 μ g/L in sample RDS-SW-4. The samples did not exceed the acute SCDM Critical Maximum Concentration (CMC) or chronic Criterion Continuous Concentration (CCC) benchmark values.

Barium was detected in all downgradient samples. Results ranged from 95.0 μ g/L (RDS-SW-6) to 309 μ g/L (RDS-SW-4). Only the sample from RDS-SW-4 was at a concentration that was three times the background concentration of 54.7 μ g/L.

Boron was detected in all samples at levels that exceeded the detection limits of the background samples. Results ranged from 119 μ g/L (RDS-SW-6) to 4,040 μ g/L (RDS-SW-4). Background detection limits ranged from 38.3 to 50.2 μ g/L. Boron does not have any acute CMC or chronic CCC benchmark values with which to compare sample detection limits.

Chromium, cobalt, copper, and vanadium were only detected in sample RDS-SW-4 at 15.0, 3.4, 23.8 and $51.0 \mu g/L$ respectively. Chromium, cobalt and vanadium do not have any acute CMC or chronic CCC benchmark values with which to compare sample results. Copper has environmental benchmarks. The detection in sample RDS-SW-4 exceeded the benchmarks for acute CMC and chronic CCC.

Lead was detected in samples RDS-SW-1 and RDS-SW-4 at 9.9 μ g/L and 31.1 μ g/L, respectively. Background detection limits ranged from 1.0 to 2.6 μ g/L. Samples RDS-SW-1 and RDS-SW-4 exceeded

chronic CCC, which is $2.5 \mu g/L$. The acute CMC benchmark value was not exceeded in any of the samples.

Manganese was detected in all samples. Results ranged from 63.3 to 641 μ g/L. The highest background concentration was 88.5 μ g/L. Sample locations RDS-SW-1, RDS-SW-2, RDS-SW-2-FD, and RDS-SW-4 contained 641, 282, 267, and 421 μ g/L manganese respectively; which were three times the background concentration.

Nickel was detected in samples RDS-SW-1, RDS-SW-3, RDS-SW-2, RDS-SW-2-FD, and RDS-SW-4 at concentrations that exceeded the background detection limits. Results ranged from 3.4 μ g/L (RDS-SW-3) to 14.5 μ g/L (RDS-SW-4). Background detection limits ranged from 1.8 to 2.4 μ g/L. The results did not exceed the SCDM acute CMC or chronic CCC benchmark values.

Selenium was detected in samples RDS-SW-3, RDS-SW-2, RDS-SW-2-FD, and RDS-SW-4 at levels that exceeded the background samples detection limits. The detection limit was $5.0~\mu g/L$ for all three background samples. Results ranged from $7.0~\mu g/L$ (RDS-SW-2) to $25.7~\mu g/L$ (RDS-SW-4). All samples also exceeded the chronic CCC at $5.0~\mu g/L$. An acute CMC benchmark value is not established.

Zinc was detected in sample RDS-SW-4 at 48.3 μ g/L. Zinc was measured in background sample RDS-SW-7 at an estimated concentration of 7.7 μ g/L.

Many metals in sample RDS-SW-4 exceeded most benchmark values and at higher levels than in the other samples. Sample RDS-SW-1, from the Elks' Lodge pond, contained elevated boron, lead, manganese, and nickel concentrations. The pile is close to the sampling location, and even with the berm located there, the metals appear to have run off to some extent into the pond. All samples had some elevated metals concentrations.

PAHs – No PAHs were detected in any of the three surface water samples analyzed for PAHs (RDS-SW-1, RDS-SW-3, and RDS-SW-5). Therefore, PAHs do not appear to be of concern in the surface water samples. The three background samples were not analyzed for PAHs.

Analytical Data Summary - Sediment

Metals – Table G-4 in Appendix G presents a summary of metals detected in the sediment samples. Results were compared to background sample concentrations in RDS-SD-7, RDS-SD-8, and RDS-SD-9, which had been collected from a nearby pond (upstream) on the western side of Highway 61/67. No benchmarks exist for sediment samples. All sediment samples collected downgradient of the RDS site

contained one or more metals at concentrations significantly above background concentrations. Only the metals that were at least three times the background concentration (if the analyte was detected in background), or above the detection limit of the background samples (if the analyte was not detected), are discussed below.

Aluminum was detected in samples RDS-SD-2, RDS-SD-4, and RDS-SD-5 at 31,000, 44,700 and 31,200 mg/kg respectively. These concentrations were three times the background aluminum concentration of 7,070 mg/kg found in sample RDS-SD-7.

Arsenic was detected in samples RDS-SD-2, and RDS-SD-4 at 20.0 and 26.8 mg/kg respectively. These concentrations were three times the background arsenic concentration of 4.3 mg/kg found in sample RDS-SD-9.

Barium was reported at elevated concentrations in all downgradient samples except RDS-SD-1, at concentrations ranging from 491 mg/kg in sample RDS-SD-6 to 3,050 mg/kg in sample RDS-SD-4. These concentrations were three times the background barium concentration of 87.2 mg/kg found in sample RDS-SD-8.

Berylium was detected in samples RDS-SD-2, RDS-SD-4, and RDS-SD-5 at 1.7, 2.5, and 1.5 mg/kg respectively. These concentrations were three times the background beryllium concentration of 0.50 mg/kg found in sample RDS-SD-8.

Boron was reported at elevated concentrations in all downgradient samples except RDS-SD-1, at concentrations ranging from 23.7 mg/kg in sample RDS-SD-3 to 193 mg/kg in sample RDS-SD-4. Boron was not detected in background with a maximum sample quantitation limit of 13.0 mg/kg.

Cadmium was detected in all samples at levels that exceeded the detection limits of the background samples. Results ranged from an estimated 0.68 mg/kg (RDS-SD-3) to 2.2 mg/kg (RDS-SD-2-FD). Background detection limits ranged from 0.43 to 0.65 mg/kg.

Chromium and copper were detected in sample RDS-SD-11 at 46.1 and 103 mg/kg respectively. Background concentration for chromium and copper were highest in sample RDS-SD-8 at 10.7 and 33.3 mg/kg respectively.

Lead was reported at elevated concentrations in all downgradient samples except RDS-SD-4 and RDS-SD-5, at concentrations ranging from 107 mg/kg in sample RDS-SD-6 to 637 mg/kg in sample

RDS-SD-2-FD. Lead was detected in background sample RDS-SD-8 at 28.7 mg/kg. The maximum lead concentration found in a source sample was 58.9 mg/kg.

Magnesium was reported at elevated concentrations in all downgradient samples except RDS-SD-1, at concentrations ranging from 10,900 mg/kg in sample RDS-SD-6 to 18,100 mg/kg in sample RDS-SD-4. Magnesium was detected in background sample RDS-SD-9 at 3.170 mg/kg.

Manganese was detected in samples RDS-SD-2 and its field duplicate RDS-SD-2-FD and RDS-SD-5 at concentrations of 1,510, 866, and an estimated 1,230 mg/kg respectively. These concentrations were all three times the background concentration of 265 mg/kg measured in RDS-SD-9.

Mercury was detected only in sample 5198-18 (RDS-SD-5) at an estimated 0.19 mg/kg. Mercury was not detected in any of the background samples.

Nickel was detected in samples RDS-SD-2-FD and RDS-SD-4 at concentrations of 31.3 and 35.5 mg/kg respectively. These concentrations were three times the background concentration of 10 mg/kg measured in RDS-SD-8.

Selenium was detected in samples RDS-SD-2, RDS-SD-2-FD, and RDS-SD-4. Results in these samples ranged from 7.1 mg/kg (RDS-SD-2-FD) to 16.5 mg/kg (RDS-SD-2). Selenium was not detected in background sediments. Background detection limits ranged from 3.0 to 4.5 mg/kg.

Sodium was detected in samples RDS-SD-2, RDS-SD-2-FD, RDS-SD-4, RDS-SD-5, and RDS-SD-6. Results in these samples ranged from 857 mg/kg (RDS-SD-6) to 5,350 mg/kg (RDS-SD-4). Sodium was not detected in background. Background detection limits ranged from 428 to 649 mg/kg.

Vanadium was detected in samples RDS-SD-2 and RDS-SD-4 at concentrations of 76.6 and 93.9 mg/kg respectively. These concentrations were three times the background concentration of 23.2 mg/kg measured in RDS-SD-7.

Zinc was detected in samples RDS-SD-1, RDS-SD-2-FD, RDS-SD-5 and RDS-SD-6 at concentrations of 183, 197, 156, and 204 mg/kg respectively. These concentrations were three times the background concentration of 50.1 mg/kg measured in RDS-SD-8.

The high results in these samples compared to the background detection limits suggest that releases of these metals to the environment may have occurred.

PAHs – No PAHs were detected in samples RDS-SD-1, RDS-SD-3, and RDS-SD-5, which were the only sediment samples analyzed for PAHs. Therefore, PAHs do not appear to be of concern in the sediment samples.

4.0 HAZARD RANKING SYSTEM FACTORS

This section discusses the sources of contamination and the contaminant migration pathways evaluated under the Hazard Ranking System (HRS).

4.1 SOURCES OF CONTAMINATION

The coal fly ash pile covers approximately 10 to 12 acres. The depth of the pile is approximately 30 feet at its deepest point. The length of the fly ash pile (north to south) is approximately 500 feet, and the width (west to east) is approximately 525 feet. The volume of the pile was calculated by determining the volume of a triangular prism: $\frac{1}{2}$ base x height x length, which is 525 feet x 500 feet x 30 feet = $\frac{7.875,000}{2}$ = $\frac{3.937,500}{2}$ cubic feet ($\frac{1}{2}$), which is equivalent to approximately 145,833 cubic yards ($\frac{1}{2}$).

4.2 GROUNDWATER PATHWAY

This section discusses the groundwater pathway.

4.2.1 Hydrogeological Setting

The 22 geologic formations exposed in Jefferson County range in age from Cambrian to Pennsylvanian (USDA 2011). The Cambrian rocks that crop out are composed of massive dolostone. The Ordovician system is exposed in almost three-quarters of the county; those rocks have had a significant role in the economic growth and development of the area. Quarries in limestone and dolostone have furnished building stones, aggregate, and cement for bridges, highways, and buildings. Sand mined in the St. Peter Sandstone is used by the glass industries (USDA 2011). The Devonian system is represented by a narrow band of sandstone, shale, and limestone that crosses the northeastern part of the county. The Mississippian system consists primarily of limestone and cherty limestone. The Pennsylvanian system consists of reddish-brown sandstone and bluish-gray to purple shale (USDA 2011).

Geologic units consist of flat to gently dipping bedrock dominated by dolostone, sandstone, and limestone formations. A slight regional dip of 1 to 2 degrees to the northeast has been altered by northwest-southeast trending folds and faults, where bedrock dip is over 10 degrees (USDA 2011).

Jefferson County is divided into seven physiographic regions. The regions have landscape shapes controlled by separate geologic units with variable bedding thickness, weatherability, and time of deposition. They vary from narrow ridgetops with steep hills and narrow valleys to gently rolling uplands. The highest point in the county is on Vinegar Hill, at 1,060 feet amsl. The lowest point is in the Mississippi River bottom, at 385 feet amsl (USDA 2011).

The site is located in the east-central part of Missouri in the Salem Plateau groundwater province, which surrounds the St. Francois Mountains and includes all or parts of 49 counties—an area of about 24,760 square miles. Groundwater resources in the Salem Plateau groundwater province are the most extensive in the State. Two major aquifers underlie this region—the St. Francois aquifer and the Ozark aquifer (MDNR 2011a).

Overlying the St. Francois aquifer is 100 to 500 feet of low-permeability carbonate rock and shale, including the Derby-Doerun dolomites and Davis Formation. Together, they form the St. Francois confining unit. Though these units can yield small quantities of water, they are not considered a significant aquifer. Instead, they greatly limit the interchange of water between the two aquifers (MDNR 2011a).

Thick Ordovician- and Cambrian-age dolomite and sandstone units comprising the Ozark aquifer overlie the St. Francois confining unit. The Ozark aquifer consists of bedrock units from the top of the Kimmswick Limestone to the base of the Potosi Dolomite. Throughout much of the province, the Ozark aquifer is generally 800 to 1,000 feet thick, but it reaches thickness exceeding 2,000 feet locally. It is considered an unconfined aquifer in most of this region (MDNR 2011a).

The Ozark aquifer is the most widespread and widely used aquifer in Missouri. It supplies nearly all of the water-supply needs in this province. Depending on well depth and location, private domestic wells a few hundred feet deep can easily produce water ample for domestic purposes, while larger-diameter wells 1,200 to 1,500 feet deep typically can produce from 300 to more than 1,000 gallons of water per minute (MDNR 2011a).

4.2.2 Groundwater Targets

Crystal City encompasses a total area of 3.7 square miles. The population of Crystal City was 4,247 during the 2000 census. The population density is 1,136.7 people per square mile (Wikipedia 2011). Crystal City has three municipal wells that serve 4,010 people (MDNR 2011b). The wells listed come from the Center for Applied Research and Environmental Systems (CARES) database from the University of Missouri (MU). The wells listed are: Ranney–Well #1, Hospital–Well #2, and Well #3 (MU 2011).

Ranney-Well#1 is 90 feet deep and is in the alluvial aquifer. Hospital-Well #2 is 750 feet deep and is in the Ozark aquifer. Well #3 is 555 feet deep and is in the Ozark aquifer (MU 2011). The City supplies drinking water to the RDS site.

Residences within the 4-mile target distance limit (TDL) for the site are largely supplied by municipal or domestic wells. Figure 5 in Appendix A shows the 4-mile groundwater TDL for the RDS site, the registered wells within the TDL, and the coverage areas for the wells. The MDNR Certified Wells database for registered wells lists 238 domestic wells and 16 municipal wells within the 4-mile radius of the RDS site (MDNR 2010b).

The number of domestic wells listed within 0.5- to 1-mile radius of the site is 3. Domestic wells listed within a 1- to 2-mile radius of the site are 54. Within a 2- to 3-mile radius of the site are 73 domestic wells. The number of domestic wells listed within a 3- to 4-mile radius of the site is 108 (MDNR 2010b).

The number of municipal wells listed within 0.5- to 1-mile radius of the site is 3. Municipal wells listed within a 1- to 2-mile radius of the site are 6. Within a 2- to 3-mile radius of the site are 4 municipal wells. The number of municipal wells listed within a 3- to 4-mile radius of the site is 3 (MDNR 2010b).

The domestic wells within the 0.5- to 1-mile radius range in depth from 240 to 657 feet and have static water levels (SWL) ranging from 0 to 245 feet bgs. The wells were constructed between 1987 and 2005. Two of the wells are located northeast of the site, and one is located west of the site (MDNR 2010b).

The number of domestic wells within the 1- to 4-mile radius increases with distance from the site. The depth of the deepest well in the 1- to 2-mile radius is 610 feet. The SWLs range from 0 to 365 feet bgs. The wells were constructed between 1987 and 2008. Domestic wells within this radius range from west to southwest and east to southeast (MDNR 2010b). The depth of the deepest well in the 2- to 3-mile radius is 590 feet. The SWLs range from 0 to 280 feet bgs. The wells were constructed between 1987 and 2008. Most of the domestic wells within this radius range from northwest to southwest. The depth of the deepest well in the 3- to 4-mile radius is 540 feet. The SWLs range from 0 to 310 feet bgs. The wells were constructed between 1987 and 2009. Most of the domestic wells within this radius range from west to northwest (MDNR 2010b).

4.2.3 Groundwater Pathway Conclusions

No groundwater or drinking water samples were collected during the RSE/PA sampling activities. No drinking water wells are located on the western side of Plattin Creek within the city limits of Crystal City.

Private drinking water wells are located on the eastern side of Plattin Creek, between the site and the Mississippi River. Groundwater likely travels to the east toward the Mississippi River. The nearest domestic wells are located 0.5 to 1 mile east, with most of the wells within the 1- to 2-mile radius east of the site. The probability of a release from the site (via leaching) to an aquifer used to supply nearby drinking water wells is low.

4.3 SURFACE WATER PATHWAY

Based on the USGS topographic map, the RDS property is approximately 400 feet amsl. The topographic gradient of the area is generally to the east-southeast, toward Plattin Creek.

The annual precipitation for Jefferson County is about 38 inches, with about 45 percent (17 inches) falling in April through September. The heaviest one-day rainfall on record was 4 inches on October 20, 1983. The average seasonal snowfall is about 19 inches, with the highest seasonal snowfall depth of 19 inches at any one time during the period of record (USDA 2011).

4.3.1 Hydrological Setting

Drainage from the RDS site is to the east-southeast, toward the perennial stream Plattin Creek, located approximately 0.5 mile to the east. Plattin Creek flows to the northeast and drains into the Mississippi River, approximately 2 miles northeast of the RDS facility (see Appendix A, Figure 4). The site is located within the 100-year floodplain of the Mississippi River (FEMA 2011).

For the RSE/PA, six collocated surface water and sediment samples were collected either on the RDS site or on adjoining properties (see Appendix A, Figure 3). RDS-SW/SD-1 were collected from the Elks' Lodge pond (Willers Lake) near the northeastern side of the site. RDS-SW/SD-2 were collected from the east side of railroad tracks by a culvert. Field duplicates were collected here as well. RDS-SW/SD-3 were collected from the west side of the railroad tracks. RDS-SW/SD-4 were also collected from the west side of the railroad tracks (farthest north sampling point, except for Elks' Lodge pond). RDS-SW/SD-5 were collected from the southeast side of the fly ash pile (low-flow stream water). RDS-SW/SD-6 were collected from the south side of the pile (standing water). Samples RDS-SW/SD-7, RDS-SW/SD-8, and RDS-SW/SD-9 (background samples) were collected upgradient of the site from a pond on the west side of Highway 61/67.

4.3.2 Surface Water Targets

Plattin Creek is a perennial stream and flows generally northeast into the Mississippi River. Drinking water intakes within the 15-mile TDL of the probable point of entry (PPE) to Plattin Creek include two water supplies along the Mississippi River. The first water supply downstream is an industrial water supply at the River Cement Company. The second water supply downstream is a public water supply at the Ameren UE Rush Island Plant (EPA 2009). No drinking water intakes are present along Plattin Creek to the Mississippi River.

The site is located in a wetland designated as a freshwater forested shrub, according to the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) (USFWS 2011a). The designated code for the site is PFO1A, which means it is in the Palustrine System, forested class, broad-leaved deciduous subclass, water regime which is temporarily flooded (USFWS 2011b). The Palustrine System includes all non-tidal wetlands dominated by trees, shrubs, emergents, mosses, or lichens. The forested class is characterized by woody vegetation 6 meters high or taller. The subclass broad-leaved deciduous includes woody angiosperms with relatively wide, flat leaves that are shed during the cold or dry season. The water regime, classified as temporarily flooded, is characterized by surface water present for brief periods during the growing season, but the water table usually lies well below the soil surface for most of the growing season (USFWS 2011b).

The Elks' Lodge pond is classified as a freshwater pond, according to the USFWS NWI (USFWS 2011a). The designated code for the pond is PUBG, which means it is in the Palustrine System, unconsolidated bottom class, water regime which is intermittently exposed (USWFS 2011b). The Palustrine System is explained above. The unconsolidated bottom class includes all wetlands and deepwater habitats with at least 25 percent (%) cover of particles smaller than stones (less than 6 to 7 centimeters) and a vegetative cover less than 30%. The water regime, classified as intermittently exposed, is characterized by surface water present throughout the year, except in years of extreme drought (USFWS 2011b).

Endangered and proposed as endangered species known or likely to occur in Jefferson County, Missouri, include: the Indiana bat (endangered), Pallid sturgeon (endangered), snuffbox (proposed as endangered), and five other listed endangered or proposed as endangered species (USFWS 2011c). The presence of these species within the site area has not been verified; nor have critical habitat areas been delineated. Recreational fishing takes place in Plattin Creek, the Elks' Lodge pond, and in the Mississippi River. Commercial fishing may occur in the Mississippi River.

4.3.3 Surface Water Pathway Conclusions

Six collocated surface water/sediment and one field duplicate samples were collected in or adjoining the site. In sediment, most analytes detected at highest concentrations were in sample 5198-11 (RDS-SD-4). The highest level reported for each metal meeting the observed release criteria are listed below in mg/kg:

- Aluminum 44,700
- Arsenic –26.8
- Barium -3.050
- Beryllium –2.5
- Boron 193
- Cadmium 2.0
- Chromium 46.1
- Copper 103
- Lead 637

- Magnesium 18,100
- Manganese 1,510
- Mercury 0.19
- Nickel 35.5
- Selenium 16.5
- Sodium 5,350
- Vanadium 93.9
- Zinc –204.

Because the source pile is located directly on top of wetlands, a release from it would qualify as a release to sensitive environments. Indeed, the high metals concentrations in these samples compared to the background detection limits suggest that releases of these metals to the environment have occurred.

No PAHs were detected in samples RDS-SD-1, RDS-SD-3, and RDS-SD-5 which were the only sediment samples analyzed for PAHs. Therefore, PAHs do not appear to be of concern in the sediment samples.

The drainage area that is directly south-southeast of the site drains to Plattin Creek. The tributary drains into Plattin Creek on the east side of the railroad tracks, approximately 500 feet from the site. Plattin Creek then drains into the Mississippi River.

Six collocated surface water and one field duplicate samples were collected in or adjoining the site. Sample 5198-105 (RDS-SW-4) had the highest levels of analytes reported of all samples, except for one. Manganese was reported at 641 μ g/L in sample 5198-101 (RDS-SW-1). Arsenic, barium, boron, chromium, cobalt, copper, lead, nickel, selenium, vanadium, and zinc were detected in sample 5198-105 (RDS-SW-4). The metals detected and the highest level reported for each are listed below in μ g/L:

- Arsenic 29.7
- Barium 309
- Boron 4,040
- Chromium 15.0
- Cobalt 3.4
- Copper 23.8

- Manganese 641
- Lead 31.1
- Nickel 14.5
- Selenium 25.7
- Vanadium 51.0
- Zinc 48.3.

Sample 5198-105 (RDS-SW-4) contained many metals that exceeded most benchmark values and at higher levels than in the other samples. Sample 5198-1 (RDS-SW-1), from the Elks' Lodge pond, had elevated barium, boron, lead, manganese, nickel, and zinc concentrations. The pile is close to the sampling location, and even with the berm located there, the metals appear to have run off to some extent into the pond. All samples contained some elevated metals concentrations.

No PAHs were detected in any of the three surface water samples analyzed for PAHs (5198-101/RDS-SW-1, 5198-102/RDS-SW-3, and 5198-103/RDS-SW-5). Therefore, PAHs do not appear to be of concern in the surface water samples. The three background samples were not analyzed for PAHs.

4.4 SOIL EXPOSURE AND AIR PATHWAYS

Arsenic was detected in all surficial fill samples at concentrations between 8.9 and 18.2 mg/kg. These arsenic concentrations exceeded EPA's RSLs for industrial and residential soil of 1.6 mg/kg and 0.39 mg/kg, respectively, and the SCDM CR of 0.43 mg/kg. Only one arsenic concentration was less than the USGS mean arsenic concentration of 6.292 mg/kg reported for Jefferson County (USGS 2010). The majority of the surface fill samples also exceeded the USGS background levels for aluminum, calcium, copper, iron, magnesium and sodium. No county mean concentrations were provided by USGS for barium, boron, chromium, cobalt, nickel, or vanadium. These concentrations indicate releases of those metals may have occurred at the site. No PAHs were detected at or above the reporting limits in the surface fill samples.

The site is located in a commercial area without any residences nearby, and potential for exposure to workers is minimal. However, the RDS facility is not fenced, so exposure to contaminated fill to trespassers or visitors may be possible. The air exposure pathway was not evaluated. Air samples were not collected for the RSE/PA, based on the low probability of airborne contaminants at levels of concern at the site.

5.0 EMERGENCY RESPONSE CONSIDERATIONS

The National Contingency Plan [40 Code of Federal Regulations 300.415 (b) (2)] authorizes EPA to consider emergency response actions at those sites that pose an imminent threat to human health or the environment. Although the RDS facility is not fenced, allowing potential exposure to areas of contaminated fill on the site property, no Superfund emergency response activities appear warranted.

6.0 SUMMARY

The RDS site is located at 1150 South Truman Boulevard in Crystal City, Missouri. The site is included on the 1982 Festus, Missouri, North and West USGS 15-minute topographic map (USGS 1982) (see Appendix A, Figure 1). The site lies within a "civil colony," defined as an area of land to which title was conferred by a predecessor government and confirmed by the U.S. Government after the territory in which it is situated was acquired by the United States (National Atlas 2010). The approximate geographic coordinates for the central portion of the site are 38.206211 degrees north latitude and 90.392061 degrees west longitude.

The site covers approximately 13 acres and is currently owned by RDS. The business primarily performs sales and service for rotadrills and compressors. Coal fly ash generated by Ameren power plants, sandbags from the flood of 1993, and other materials have been used as fill materials on the site (USACE 2010). No cleanup activities are known to have occurred at the site. According to information in an EPA Region 7 CWA Enforcement Program trip report, the property owner wants to develop the area for commercial use, including the lease/sale of 2 acres for construction of a bank building (EPA 2010).

On March 1, 2010, USACE issued a NOV to the property owner. The notice stated that the fill activities that had occurred on the property required a Section 404 Permit, and that past filling activities violated Section 404 of the CWA (USACE 2010). The notice also stated that a review of resource maps and aerial photographs indicated that the area of concern contained a stream, forested wetland, and lake/wetland habitat. All of these areas are considered waters of the United States (USACE 2010).

The general objectives of this RSE/PA were to determine whether any threats to human health or the environment exist as a result of releases to soil and groundwater, and to assess the need for a removal action.

The pertinent HRS factors associated with the RDS site are as follows:

- The source pile is located directly on top of wetlands, and therefore a release from it would qualify as a release to sensitive environments.
- Surface and subsurface source samples (fly ash) exceeded ecological and health-based benchmarks for metals. The metals of concern include arsenic, copper, lead, and selenium.

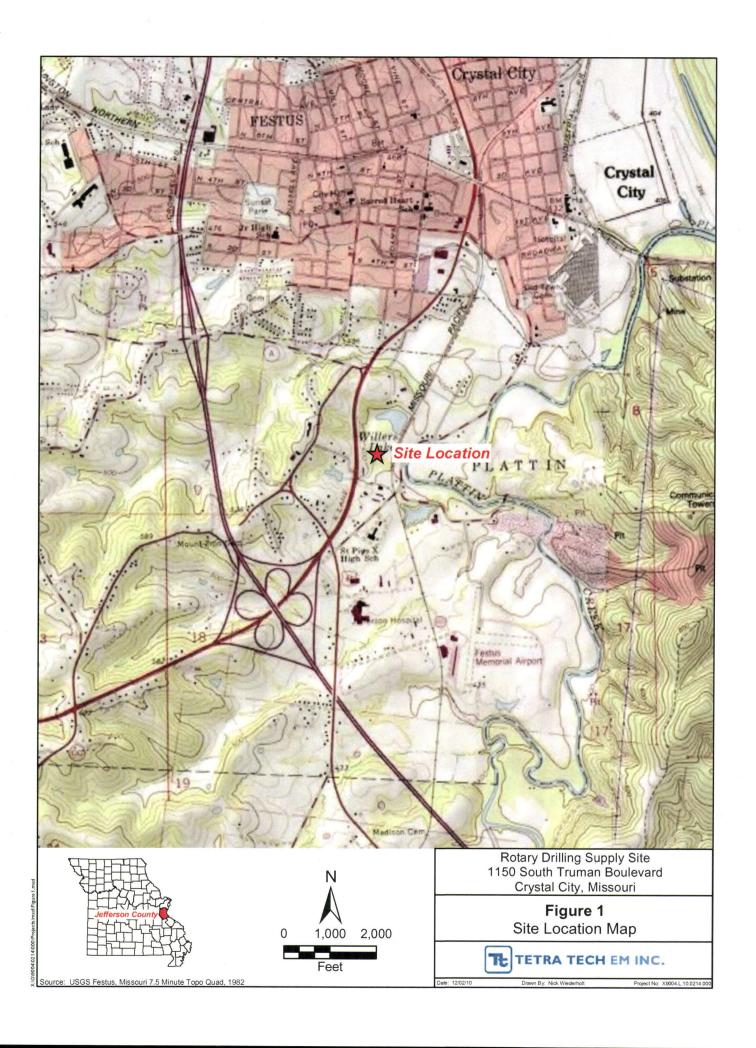
- All metal analyzed for with the exception of antimony, beryllium, cadmium, mercury, silver and thallium were reported in one or more surface water sample at concentrations significantly above background levels. Copper, lead, and selenium exceeded ecological-based benchmarks in surface water samples. Sample RDS-SW-1, collected from the Elks' Lodge pond near the site, contained elevated boron, lead, manganese, and nickel concentrations. The fly ash pile is close to that sampling location, and even with a berm to restrict runoff in the area, it appears that metals from the site may have impacted the pond. Multiple metals in RDS-SW-4, collected near the southeast corner of the fly ash pile, exceeded detection limits and health-based benchmarks. Therefore, metals from the pile appear to have been released to surface water.
- Elevated levels of metals have also been detected in sediment samples collected near the site.

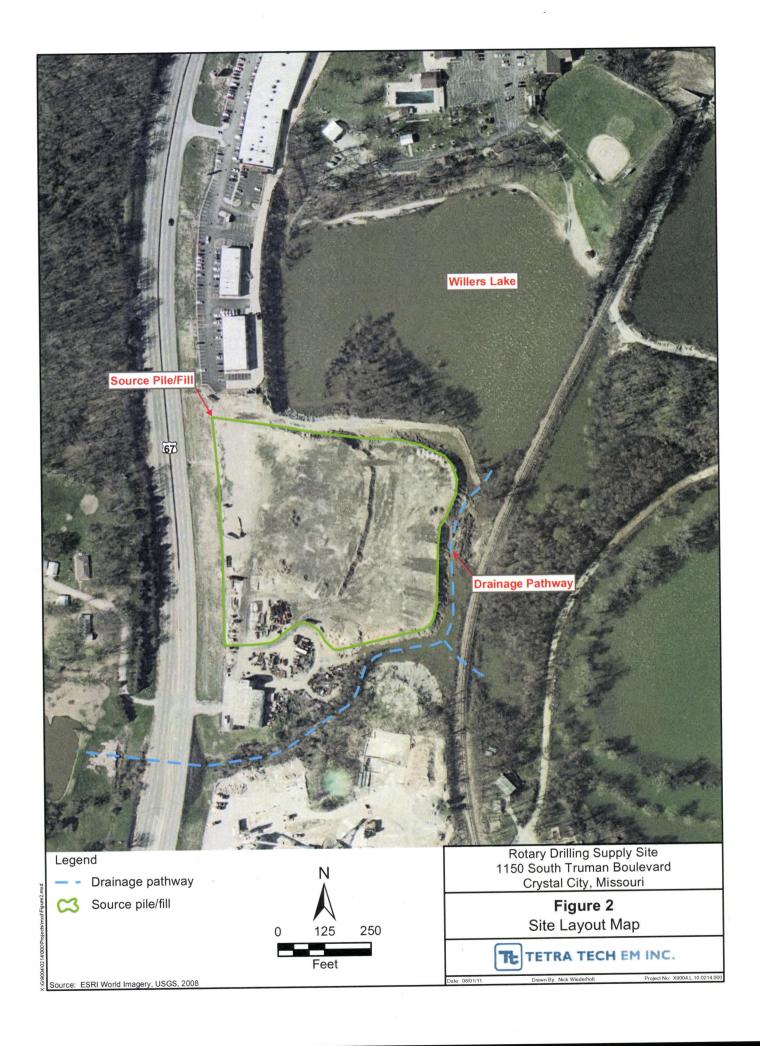
6.1 REMOVAL CONSIDERATIONS

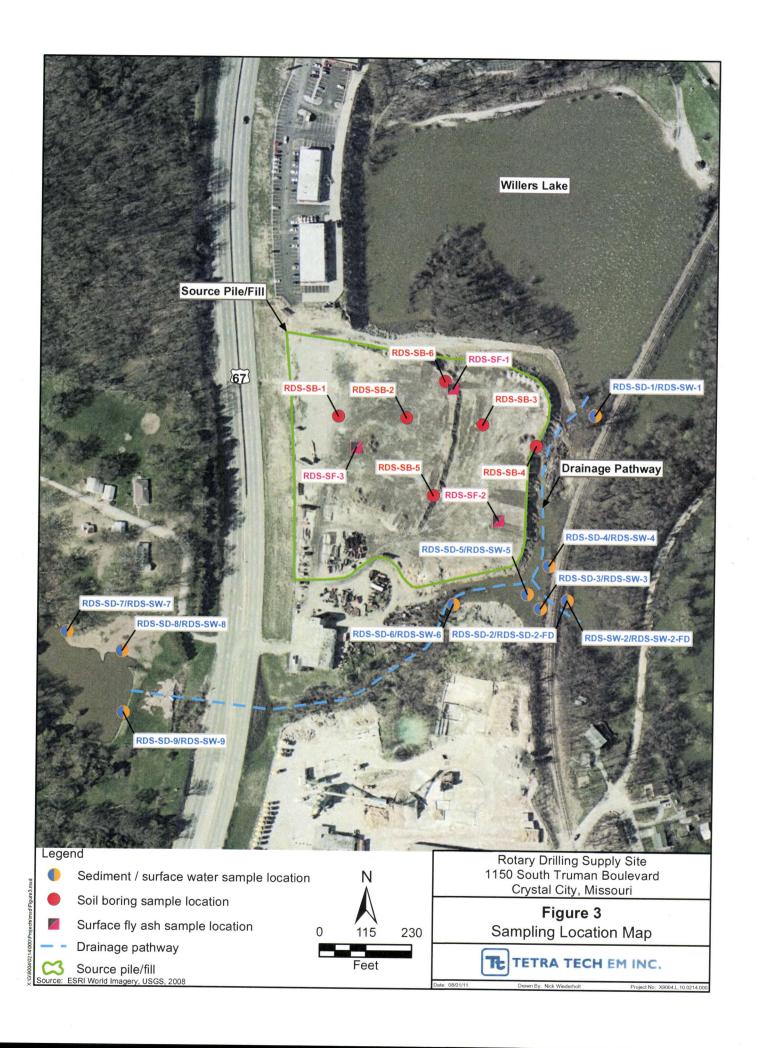
Analytical results obtained during the RSE/PA should be evaluated by EPA risk assessors to determine whether the levels and extent of contamination at the site present an unacceptable risk to human health and the environment that warrants a removal action. If a removal action is deemed necessary, it could include installation of restrictive fencing to prevent exposure to fly ash used as fill material, as well as excavation, capping, or treatment of approximately 145,833 yd³ of fly ash on the site property. A RSE form has been completed for the site and is included as Appendix H.

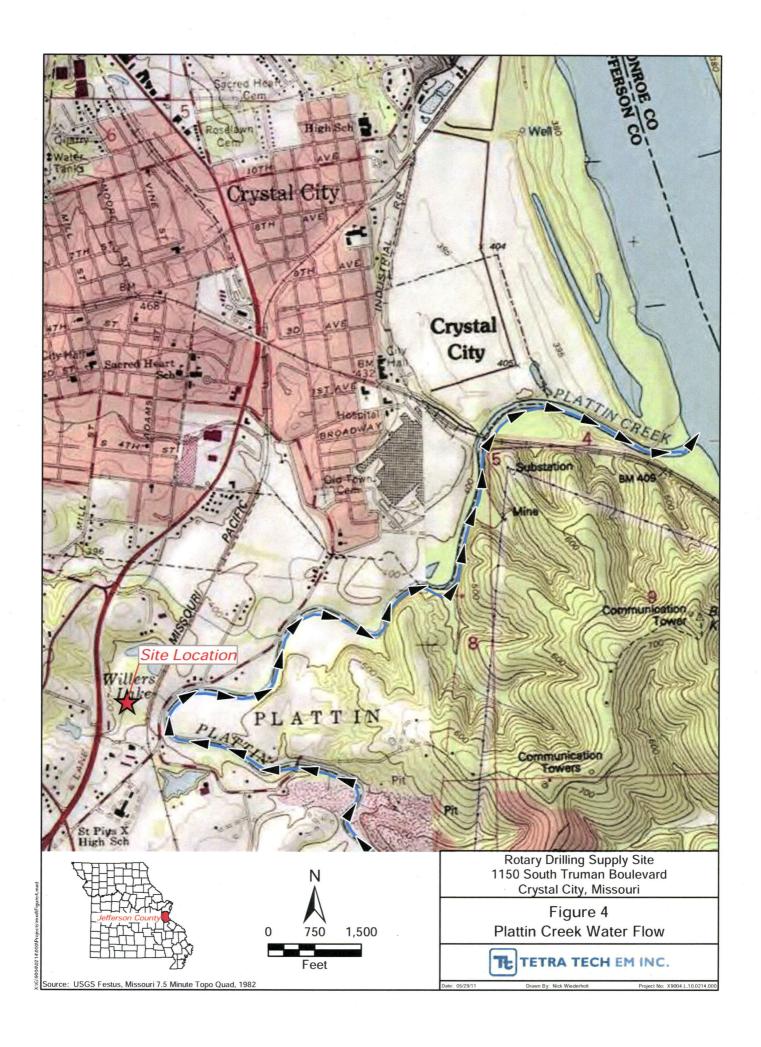
6.2 PRE-REMEDIAL CONSIDERATIONS

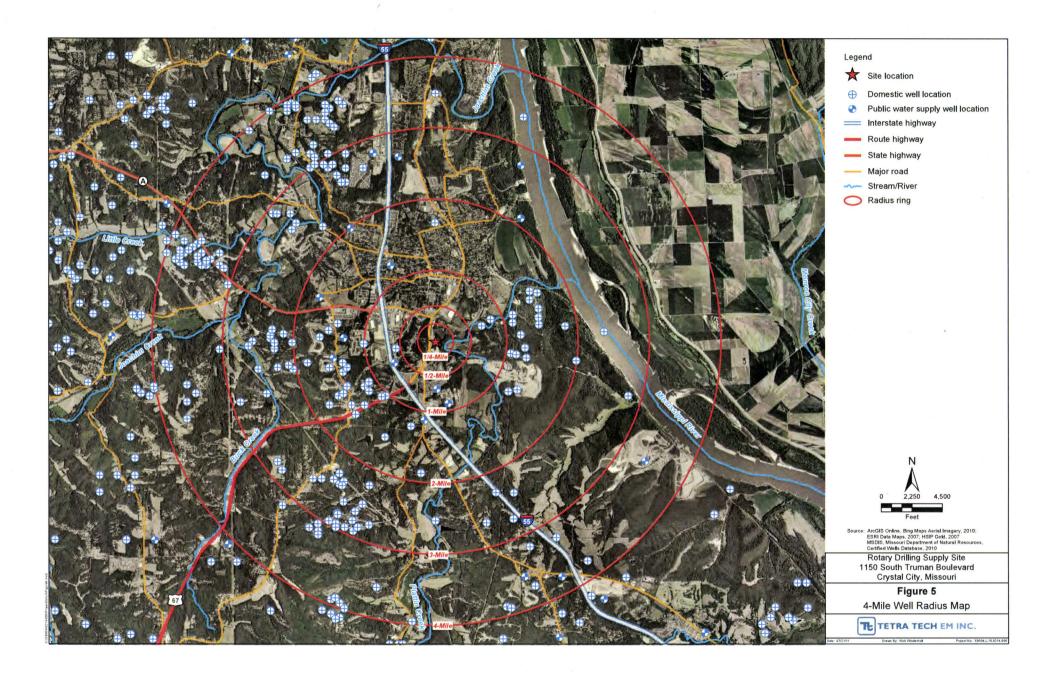
Additional surface water and sediment sampling is recommended for EPA considerations, to determine whether a release to Plattin Creek has occurred. Groundwater sampling is not recommended because probability of risk from groundwater is low, considering the contaminants and distances to wells.


7.0 REFERENCES


- Federal Emergency Management Agency (FEMA). 2011. Flood Insurance Rate Map (FIRM) Jefferson County, Missouri and Unincorporated Areas. Accessed February 3, 2011. On-line address: http://map1.msc.fema.gov/idms/IntraView.cgi?KEY=44574197&IFIT=1
- Missouri Department of Natural Resources (MDNR). 2010a. Letter regarding improper placement of fly ash fill in a wetland. From Eric E. Gramlich. To Darriel Coleman. June 30.
- MDNR. 2010b. Certified Wells Database. On-line address: http://www.msdis.missouri.edu/datasearch/metadata/utm/st_well_certified.xml
- MDNR. 2011a. Water Resources Center. Accessed February 2, 2011. On-line address: http://www.dnr.mo.gov/env/wrc/groundwater/education/provinces/salemplatprovince.htm
- MDNR. 2011b. Drinking Water Branch-Water System Details. Accessed April 6, 2011. On-line address:


 http://www.dnr.mo.gov/DWW/JSP/WaterSystemDetail.jsp?tinwsys_is_number=2850&tinwsys_st_code=MO&wsnumber=MO6010198
- National Atlas. 2010. Public Land Survey System of the United States. Accessed November 16, 2010. On-line address: http://nationalatlas.gov/metadata/plss00p020.faq.html
- Tetra Tech EM Inc. (Tetra Tech). 2010. Quality Assurance Project Plan. December 16.
- U.S. Army Corps of Engineers (USACE). 2010. Notice of Violation (NOV). March 1.
- U.S. Department of Agriculture (USDA). 2011. Soil Survey of Jefferson County, Missouri. Accessed April 4, 2011. On-line address: http://soildatamart.nrcs.usda.gov/Manuscripts/MO099/0/Jefferson_MO.pdf
- U.S. Environmental Protection Agency (EPA). 2004. Superfund Chemical Data Matrix (SCDM) Table. Washington, D.C. January.
- EPA. 2009. Greater St. Louis Sub-Area Contingency Plan. June.
- EPA. 2010. Region 7 Clean Water Act (CWA) Enforcement Program Trip Report. April 15.
- U.S. Fish and Wildlife Service (USFWS). 2010. NWI Wetland Code Interpreter. Accessed July 20, 2011. On-line address: http://www.fws.gov/wetlands/Data/wetlandcodes.html. Last Updated: March 11, 2010.
- USFWS. 2011a. National Wetlands Inventory (NWI). Accessed July 20, 2011. On-line address: http://137.227.242.85/wetland/
- USFWS. 2011b. Missouri-County Distribution of Federally-Listed Threatened, Endangered, Proposed and Candidate Species. Accessed July 20, 2011. On-line address: http://www.fws.gov/midwest/endangered/lists/missouri-cty.html. Last Updated: June 2011.
- U.S. Geological Survey (USGS). 1982. 15 Minute Series Topographic Map of Festus, Missouri, Crystal City, Missouri, North and West Quadrangles.


- USGS. 2010. Average Concentrations of Elements in Jefferson County, Missouri. On-line address: http://tin.er.usgs.gov/geochem/county.php?place=f29099&el=As&rf=east-central
- University of Missouri (MU). 2011. Center for Applied Research and Environmental Systems (CARES). Accessed July 22, 2011. On-line address: http://maproom.missouri.edu/maparchive/swip2009/temp/report 6010198.pdf?0.4376293
- Wikipedia. 2011. "Crystal City, Missouri." Accessed July 19, 2011. On-line address: http://en.wikipedia.org/wiki/Crystal City, Missouri


APPENDIX A
FIGURES

APPENDIX B PHOTOGRAPHIC LOG

Rotary Drilling Supply Site 1150 S. Truman Blvd. Crystal City, MO 63019

EPA	DESCRIPTION	This photograph shows the coal fly ash pile looking northeast.	. 1
TASK ORDER NO.			_
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Northeast	PHOTOGRAPHER	Ann Marie Pohlman	11/30/10

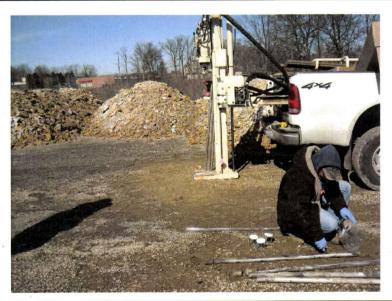
EPA TASK ORDER NO. 9004.L.10.0214.000	DESCRIPTION	This photograph shows the drainage pathway on the east side of the property.	2
	CLIENT	EPA	Date
Direction: South	PHOTOGRAPHER	Ann Marie Pohlman	11/30/10

ı			v	
	EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a berm between the coal fly ash pile and the Elks' pond (Willers Lake).	3
	9004.L.10.0214.000	CLIENT	EPA	Date
	Direction: Northwest	PHOTOGRAPHER	Ann Marie Pohlman	11/30/10

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the coal fly ash pile, facing east.	4
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: East	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows smaller coal fly ash piles on the property, facing northeast.	5
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Northeast	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a Geoprobe soil sample from RDS-SB-2, from a depth of 0 to 4 feet below ground surface (bgs).	6
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: NA	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11


EPA TASK ORDER NO.	DESCRIPTION	This photograph shows Geoprobe sampling at location RDS-SB-2.	7
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: South	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a Geoprobe soil sample being collected at RDS-SB-3, from a depth of 7 to 9 feet bgs.	8
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: NA	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows Geoprobe soil samples from RDS-SB-6.	9
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: NA	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a Geoprobe soil sample being collected at RDS-SB-6, from a depth of 13 to 15 feet bgs.	10
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: North	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a source/fill sample being collected from the fly ash pile.	11
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Southwest	PHOTOGRAPHER	Christy Engemann	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a sediment sample being collected from the Elks' pond (Willers Lake).	12
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: North	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a surface water sample being collected from sample location RDS-SW-4.	13
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Southeast	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the coal fly ash pile and a drainage pathway on the south side of the property.	14
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: East	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the pond on the west side of Highway 61/67, where background sediment and surface water samples were collected.	15
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: West	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a background sediment sample being collected.	16
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Southwest	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

APPENDIX C
FIELD LOGBOOK

11-30-10

Kotary Drilling Jupply Site 0640 Depart St. Long for De Soto field Mice.

0700 Porivers Desuto held Mice. Have a Site recon walk at Rotury Drilling Supply Sik in Crystal City. EPA project manager
Jamie Kernard-Drakey and Jim Silver will be on Sife with
STAKT Project Manager Ann Marie Pohlman + STAKT field
tean Lauren Jackson. Worken HASP for sampling achietes
for this project + 90 to Wal Mart for supplies for project.

1235 Depart Desph field Mice

1245 Arrive at Kotary Drilling Supply, Wait for START Jackson to grown HARP

t Jame Bernud-Drafey & Jim Silver (EPA).

1255 START Jackson, ERA Jamie Bernard-Drakey & Jonsofer Milk START Jackson reads + signs HASP; going the metwith Daniel Coleman - Onherof Rotary Dulling Suppy Site Ams + Adam Breeze. Darrel Coleman's lawyer. Est Bernard-Drakey, + Silver + START Pohlman & Jackson Walk the property. This sike is in violation of Clean Water Act (ChA). putang cal fly ash in wetland area EPA + START locate Streams t Pondlon newby property), go over where I sample & whatev. Will collect beoposte Samples of pile (fly ash) in 5 le locations (na days with). These samples will be analyzed by TUP metals, TAIL metals (plus boron), + PAHs, Other samples include Sourcepitelfill Sarler. Seducit + sairface water sampling for the first place of sampling. Maybe will go back to groupole by groundwater or duting will fait suppling. Depends on what we find in first phase of surpling.

1435 Moster With Low

1505 EW Mday.

Am & 11-30-10

1-5-11 Rotary Drilling Supply Site 0645 Depart St. Louis for Desoto held Moio. Arrivent Desno field Mice. bring to meet DPA Jim Silver to get 0715 access to properties for sampling. There are four properties to get access to Since last entry, STAKT prepared QAPP+ HASP for Sayling + ASKAN Las Sampling activities will begin on January 25,2011. Sampling should take 2 days blaylet m 1-25-11+ 1-26-11. Depart Desto Mie for Crystal City. 1835 Arrivat EIB lide to get access, No me here to to other properties to get access No me have at a veridential proportion but access to projectly at 824 legion Dr. Keal 18 tak Agent will give to owners, Elks holy burnet man Couple of week age; wall 0945 Arrive backat Debut held Mice Will look up phone number to get residential properties areas. Gire phon numbers to Jim. Jun Silver got aholded James Leiben & space to Gladys Cook, James Lauben wants to sign access. Gladys Cook which to falk to Son tirst. STARTPohlman departs Deloto Mile + gets access syned by Janopur James Laiber Arrive back at Deboto field Mice. Jimstaked that Gladys Cook wants to significess, Will Stop byton way home toops Macles Depart Debto. Drop 1/6 access at Glady's Coxy house in Crystal City. She wants to read access to trum make a copy pit. Will mail to Jun. Silver at fundon Mice location. 1445 of sife for St. Lowes. 1445 End of day. tw Wo the

Kotary Drilling Supply

Depart of Lines for Debto field Mice. Fred rehale in festival may drain.

Anive at Desoto field Mice. Lab Supplies for Sampling are being delivered to day. Letting HASP and attachment all liked up; STAKE Pahlman Signed HASP yesterday-1-5-1.

Downway on this for day. (lel

Kotary Drdling Supply 2-14-11 Depart St. Louis for Debot told office. Ketrul rental vehicle on mydan, 125 Arriveat Destro field Mile. Activities today will be Collecting beginste + Swhace samples from the fly ash pile. STHRT team members Christy Engemenn + Como Canacari Willmets TKRT Pohlman here at 1800. Damp EPt member Jim Silver will be on sife as well. De leport feld Nava Arman 1965 Arrive at sike, Wifty Mr. Coleman that we are malk Measure fill men tut N-S is soofeet of them E to W is SISteet. Gleet And Surples at from middle UDE + Wis 263 feet + them N+S is 114 feet in Nendt 175 monthend Collect RDS-SB-1 in far mest side of Pile. Collect 0-2 feet may breet (0-2 feet) with 50% vectory, 38, 20679, 90, 39288, Take 4 photos Athirlandor. 1015 Collect RDG Sta down 1 I feet. 175 tastof first suple 38, 2677. -90. 39229. Take 14 phon at this location. Collete Suple for 10-12 toot 4-7h Collect KD1 - SB-3 down to Cotteet EDS-SB-3 downtogentle 165 Collect KD1-58-3. Collect from 7-9 took depth of charter coloned fill Source collected 175 feet easter RD+ Se2 Coordinates an: 38, 20071, -90,39162 Take be that at this location 1210 Clert KDS-SB-4. Collect Sample from 24-26 foot depth of thy ark fell-wit of light tancolored. Sample wheeted in east side of edge Mill by piles. Gordnaks are! 38 20656, -90, 39117. Take 13 photosat the laston. 1248 Collect KDS-SB-5. Collect Saure from O-2 feet depth. Surrecollected a southside of property by equipment Coordinates and 38. 20024, -91.39201 Take 30 bots 6-4 top Actual Let 8-on the bottom in Same photo 1320 Callect LDS-SB-6. Callect sample from 1-15 feet. Sample located on harthside of property next to fill piles Coodinates and 38. 20701, -90, 39195. Take 12 Sammer Philter, 1318 Collect rusake South of gegrabe Company.

2-14-11 Return Drilling Supply

1339 Collect Surface 5 put fly ash Sample on northernal of Pile in property.

Conductor are 38-20696, -90. 39188 Photodocument location 1350 Collect Surface Soil Sample RDS-SF-2 on SE side of property. Coordinates: 38.2040le N, -90.39/5/W
1400 Collect Surface Hyrath sample KDX-SF-3 on West side of property.
Coordinates are: 38.20688, -90. 9273. Photo document location.
1450 Province back at field price. Unpack Samples out which while
1515 Marrise Shark at field price. Unpack Samples out while 1515 M-site you's Laws. 1545 Ord of day.

Kotary Drilling Supply 2-15-11 Depart St. Louis for Disoto tield Muci. Arrive at Deloto field Muc. Activities for today include Sediment + Surface water sampling, along with background samples. START Inhoman prepares for the days activities START Engenment Str. START deturnies not enough surpling pis, So START Characon M to Term Tech Mice in fentan to get more START Parlin & Jimblier depart Delets feld preiser KOI. Arrive at Robary Drilling Supply. STAKET Poblant OK Silver petant Saipling locations for Sidnent & surface mater STARLT Engement back master with extra jar containers. Collect Surface maker of sedurant sample at Elks Pand. Collect PAt15+ INSTIMSO SPIKE, samples have as well Coordinates are 38.20676, -90, 39dde. Photo document were RDS-SD-1 and RDS-SW-1 هنا luch 12: be to surry locations. 1355 Collect Sedent & Surface water & duplicate Sarle an east Side of vailyout tracks by culvert. Coordinate are: 38.205514 -90. 39093. Photo dolinest an. RDS-SD-2, RDS-SD-1FD, RDS-SW-1, 13: Well sedement & surface water Samples for 1/4ths in addition to antals 1205 500 170 exest Side of realroad backs by culvant. Coordinates are: 38, 20546, 9.39116. Photo documentain. RDS-50-3 + EDS-5W-3 1330 Collect Sediment & Surface water Somples from west side at railroad waters Furthest worked the sayling yourts lexcept for tike Pandl NoPAtkinhetedess so 4 Attric Country and 38. 20575, -90. 39/108. Photodoment am \$25.50 4 13th Collect sediment & souther maker during the PAHS presentheast side Aprila RDS 30 5 Coor durally are: 38, 20556, -90, 34127. Phot dementare Collect Sediment + Sintree major formetals. No PAtterollected at historium FD>->0 Lacher in m Such side Ut vile intrad Standing warm are: Coordinates and. 38, 20550, 90.39191. Photo drump and Sandkyrin and & Salantsop

Rotary Dilling Supply 2-15-11 1420 Collect Surface & Sedimint background saiple man from pard Angendacious fran property on west side of 6167. Prist surjected in Southwest Side of green twhete Stedenhartmistern Sidi of prod bordinas me: 38, 20537, -20 39525. Photodounatain. RDS, SD-4 and RDS-5W-54.7 1430 Collect Surface & Sedment background Saurle from pand across from property on westskies (el167. Sampleculected with side of find South of recoderce. Conductes and 38, 20523, -90, 39478. Must-RDS-SD-8 and RDS-SW-8 delingstown 1445 Collect Studence of Sectional Devicage of Source from Cast side of sond is middle Coordinates are: 38. 20/81, -90. 39478. Photo document mon. All 3 background Sautes analyzedow THE metals (melading bandnermy) EDSS Swig Arrive back at field office in Desoto. Begin preparing Sawlesofur leb 1505 Shipment tempty at Vehicle. Collected Field Blank at 1500. Mi site for sh louis. hillday.

Letary Brilling Supply Sike

A-lle-II

Arrive at Terra Techologice in Fentin. Look for bubble wrap at Cooler to
Ship samples to lab. Only tund cooler—will buy bubble wrap at Wal-Mort.

Starks team number Christy buglinam on six at Tetra Tech. Leave to
Pesito to prepare samples for ASK 5198 for lab Shipment. On way
June, Stopat Wal-Mort in Festus to get bubble wrap, ice, + ziplick bugs.

Arrive at Desoto field Mice. Vregan ASR 5198 for lab Shipment:
Arrive at Desoto field Mice. Vregan ASR 5198 for lab Shipment:

Arrive backet Terration Mice in Parts. In writing impogent fitteday.

2.16.11

APPENDIX D

GEOPROBE® BORING LOGS

								Borir	ng Log Forn	n		
Site	Nar	ne:	Rote	arv Dr	illing S	upply Site			Boring Number	: RDS-SB-1		
		•				2/14/2011	-	•				
			-		oprobe							
Dril	ling	Com	npany	y:	Seag	ull Environm	nental	Technol	ogies			
				0 feet					Total Depth:	4 feet		
	ordin				<u>)679, -</u> 9	90.39288			- -			
_			iter:		~~41.4	2 224 4 000			Geologist:		hlman & Christy	Engemann
Pro	Ject	Num	•			0.0214.000			_Weather:	Sunny, windy,	4US	
Sample Interval	Interval	Soil Recv.	Core Recv.	Field Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description	and Remarks	
			\prod				!		0-4 feet: Fill - gr	avel limestone.	50% recovery.	Refusal at 4 feet.

										Bori	ng Log Forn	<u> </u>
Site	Na	me		Rots	arv/	Dril	llina S	upply Site			Boring Number	·· RDS-SR-2
			_					2/14/2011		•	Dornig Hamber	. NDO-0B-2
Dril			-			1111		oprobe Bori	•			
Dril	_							agull Enviro		l Toobn	ologios	
Į.	_		-		_		368	aguii Eriviroi	menta	ıı reciiri		12 foot
Elev			_				677	00.0000			Total Depth:	12 feet
Coc					_		6//, -	90.39229			-	A M : D II
Dep							4 1 40				Geologist:	Ann Marie Pohlman & Christy Engemann
Pro	ject	NU	mr	er:	<u>X9</u>)UU4	4.L.10	.0214.000			_Weather:	Sunny, windy, 40s
Sample Interval	Interval	Soil Recv		Core Recv.	Field	Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks
	Π		T	T							0-4 feet: Fill - gra	ayish-tan, rocky, sandy.
							H					
			ı				L					
			ı	ì								
			1	ı								
			ı	Ţ			-					
ļ	H		ı	1			5					
	П		ı								4-8 feet: Fill - gra	ay, sandy.
							–					
	Н		١	1			<u> </u>					
	П											
				ı								
				1			_					
<u> </u>				1			10					
l				ı								r, rocky, tan. Appears native at 12 feet. Collect
				L							sample from 10-	12 feet.
┝┶	╙	┨	H				-					
							L					
-		Ì										
							┝ ,_					
			ł				15	-				
			1				L					
			1									
		-					-					
			ı				L					
			١				_					
	1							1				
	1						_					
							–					
							<u> </u>					
					l							
		1	\perp						<u> </u>			

	Boring Log Form											
Site	N S	am	e:	R٥	tarv	Dril	ling S	upply Site		٠	Boring Number	
			-					2/14/2011		•		
Dril				•			•	probe Borir	ng			
Dril		-						gull Environ	_	l Techno	ologies	
Ele	vati	ion	ı: ₋	~4	00 fe	et					Total Depth:	28 feet
Cod	ordi	ina	tes	:	38	.20	671, -	90.39163			-	
•					: <u> </u>						Geologist:	Ann Marie Pohlman & Christy Engemann
Pro	jec	t N	lum	be	r: <u> </u>	(90)4.L.1	0.0214.000			Weather:	Sunny, windy, 40s
Sample Interval	Interval		Soil Recv.	Core Recv.	Field	Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks
	Ħ	T		Ť							0-4 feet: Sandy,	rocky, tan. 75% recovery.
							_ _ _ _ _ 5					rocky, tan. Dark brown in 6-to-9-foot range.
							_ _ _ _ _ <u>10</u>					Collect sample from 7-9 feet (dark-colored fill). sandy, rocky, tan. Small dark area in 11-foot
							_ _ _ _ _ 15				12-16 feet: Sand	dy, tan. 75% recovery.
												dy, tan. 75% recovery. Sky (gravel) until the last 18 inches, which is bears native).

_											
	Boring Log Form										
S	ite	Naı	me:	Rota	ary Dri	lling S	upply Site			Boring Number	: RDS-SB-4
					rt/Fini		2/14/2011		•		
D	rilli	ng	Meth	nod:		Ged	probe Borir	ng			
		_	Con	_	-	Sea	gull Enviror	menta	l Techn	ologies	
					0 feet					Total Depth:	28 feet
			ates		-	656, -	90.39117		•		
Depth to Water: NA Project Number: X9004.L.10.0214.000										Geologist:	Ann Marie Pohlman & Christy Engemann
	roje	ect —	Num	ber:	<u> </u>	/4.L. I	7.0214.000			Weather:	Sunny, windy, 40s
Sample	Interval	Interval	Soil Recv.	Core Recv.	Field Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks
				П						0-4 feet: Fly ash	fill. Light gray and tan. 80% recovery.
		į				_ _ _ _ _ 5					
						_ _ _ _ 10				4-8 feet: Same a	as above. 60% recovery.
						_ _ _ _ 					as above. 50% recovery.
						_ _ _ _ _ 20				recovery. 16-20 feet: Fly a	sh fill. Rocky, tan and light brown. 75% sh fill. Light gray, very wet. 100% recovery. sh fill. Llight tan. 60% recovery.
						25					light tan, fly ash fill to 26 feet. Clay at 26-28 ple from 24-26 feet.

								Borin	g Log Form	1	
Site Na	ame	. F	Rota	rv Dril	lina Su	pply Site			Boring Number	: RDS-SB-5	
						2/14/2011			,		
Drilling					_	probe Borin	ng				
Drilling	-			/ :		gull Environ		I Techno	ologies		
Elevat									Total Depth:	12 feet	
Coord		_			624, -9	0.39207					
Depth				NA					Geologist:	Ann Marie Pohlman & Christy Engemann	
Projec	t N	uml	er:	X90	04.L.10	0.0214.000			Weather:	Sunny, windy, 40s	
Sample Interval	IIICEI VAI	Soil Recv.	Core Recv.	Field Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks	
			Ť							n fill. Light gray and tan. 70% recovery. Collect	
					F				sample from 0-2	rieet.	
\vdash \vdash \vdash \mid					 						
					-						
					L .						
					5						
									4-8 feet: Same	as above. 90% recovery.	
					 				[·		
					\vdash						
					L						
					L						
					T 10						
		ŀ		1						5 feet: Fly ash fill. 10.5-11 feet: Sand. 11-12	
					H		l		feet: Shot rock.		
	Ц				F						
					L			ļ			
		Ì		1							
				E	15						
					15	1					
					L						
				1							
		.	İ		r						
					-						
					<u> </u>	4					
	1										
	-				 						
					-						
1	1		İ	1							

								Borin	g Log Form	n		
Sit	e Na	me:	Rot	ary Dri	illing S	upply Site			Boring Number	r: RDS-SB-6		
				rt/Fin		2/14/2011		-	J			
			hod:			oprobe Bori						
Dri	lling	Cor	npar	ıy:		agull Enviro		al Techn	ologies			
	_		-	0 feet					Total Depth:	16 feet		
Со	ordi	nate	 s:	38.20	701, -	90.39195			•			
De	oth (o W	ater:	NA					- Geologist:	Ann Marie Pohlman & Christy Engemann		
Pro	ject	Nun	nber	: X90	04.L.1	0.0214.000			Weather:	Sunny, windy, 40s		
	T	Τċ	T >	-		1						
Sample Interval	Interval	Soil Recv	Core Recv	Field Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks		
									0-4 feet: Fly ash	n fill. 100% recovery.		
	П							·				
					 							
	Н				_							
			Н		L		:	İ				
					5							
									4-8 feet: Fly ash	n fill to 7 feet. Other fill at 7-8 feet. 75%		
		1							recovery.			
			11		L							
	П		П									
	11											
	П				┝							
	$\ \ $				10				0.40 (
									8-12 feet: Fly as	sh and other fill at 10-12 feet. 50% recovery.		
										•		
	H		-		-							
_	┨			ļ	<u></u> ⊢ ∣							
1	Н				L							
1	Н	ļ			15							
	11	İ							12-16 feet: Fly a	ash and other fill. Silty sand at 15-16 feet.		
	Н	┨			-				Collect sample fr			
					L	:						
				İ								
					-							
					├							
					-							
					<u> </u>							

APPENDIX E

FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS

ASR Number:	5198 Sample Nui	mber: 1	QC Co	de: Matrix: Solid Tag	g ID: 5198-1
Project ID:	JBDA7X900			ject Manager: Jamie Bernard	d-Drakey
Project Desc:	Rotary Drilling Supp	oly Inc PA s	ampling		
. City:	Crystal City	•		State: Missouri	
Program:	•			•	
Site Name:	ROTARY DRILLING !	SUPPLY INC -	SITEWI	DE Site ID: A7X	9 Site OU: 00
Location Desc:	Soil sample				
		Externa	al Samp	ole Number: <u>RDS-SB</u>	-1
Expected Conc	(or Circle	One: Low	Medium	High) Date	Time(24 hr)
Latitude:		Samı	ole Coll	ection: Start: 2/14/11	<u>9</u> : <u>3</u> 7
Longitude:				End://	;
Laboratory An	alyses:				
Container	Preservative	Holding) Time	Analysis	
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids by ICP-AES	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in Soil	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil by GC/MS	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury in Soil	
Sample Comme	ents:				
(N/A)	•	20 11	1.79	N	

ASR Number: 519	8 Sample Numb	per: 2	QC Cod	le: Matrix:	Solid Ta	g ID: 5198-2
Project ID: JB				ject Manager: Ja	mie Bernar	d-Drakey
City: Cr	tary Drilling Supply ystal City	Inc PA s	ampling	State: M	issouri	
	iperfund DTARY DRILLING SÜ	PPLY INC -	SITEWI	DE S	ite ID: A7X	(9 Site OU: 00
Location Desc: S	oil sample				200 50	
		Externa	al Samp	le Number: 🔟	DS-53	-7
Expected Conc:	(or Circle C	ne: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Samı	ole Coll	ection: Start: 🔏	2/14/11	10:15
Longitude: _			•	End:		***************************************
Laboratory Analy	/ses: Preservative	Holding	Time	Analysis	- Marian	
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil or	Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids b	y ICP-AES	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in So	il	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil by G	iC/MS	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury in S	Soll	
Sample Comment	s:					
(N/A)	3	8,201e7	71)		
	- 9	8,2047 10.392	29 h)		

ASR Number:	5198 Sample Num	ber: 3	QC Co	de: Matr	ix: Solid Tag	ID: 5198-3
City:	Rotary Drilling Supply Crystal City	Inc PA	Pro sampling		Jamie Bernard-I Missouri	Drakey
Program: Site Name:	ROTARY DRILLING SU	PPLY INC	- SITEWI	DE	Site ID: A7X9	Site OU: 00
Location Desc:	Soil sample	·				
• .	,	Extern	al Samp	le Number:	RDS-SB-	3
Expected Conc:	(or Circle C	ne: Low	Medium	High)	Date	Time(24 hr)
Latitude:	· .	Sam	ple Colle	ection: Start:	2/14/11	11:05
Longitude:				End:		
Laboratory An	alyses:					
Container	Preservative	Holdin	g Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids	by ICP-AES	
1 - 8 oz glass	. 4 Deg C	180	Days	1 TCLP Metals in	Soil	
1 - 8 oz glass	4 Deg C	. 14	Days	1 PAH's in Soil by	GC/MS	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury i	n Soil	
Sample Comme	nts:					
(N/A)	3	8.206	71 N			•
	_ 0	18.206 10.3910	13 W			

ASR Number:	5198 Sample Nu	ımber: 4	QC Code	: Matı	ix: Solid	Tag :	ID: 5198-4
Project ID:		_	•	ect Manager	: Jamie Be	rnard-l	Drakey
· · · · · · · · · · · · · · · · · · ·	Rotary Drilling Sup	ply Inc PA	sampling		hat		•
•	Crystal City			State	: Missouri		,
Program:	Superfund				0'1 - TD.	471/0	Cit. 011. 00
Site Name:	ROTARY DRILLING	SUPPLY INC -	SHEWID	=	Site ID:	A/X9	Site OU: 00
Location Desc:	Soil sample						
		Extern	al Sample	e Number:	RDS-	·SB·	-4
Expected Conc	: (or Circ	le One: Low	Medium I	High)	Date		Time(24 hr)
Latitude:	-	Sam	ple Collec	ction: Start:	2141	11	12:10
Longitude:		•	·	End:			• • • • • • • • • • • • • • • • • • • •
Laboratory An	alyses:						
Container	Preservative	Holdin	ıg Time	Analysis			•
1 - 8 oz glass	4 Deg C	28		1 Mercury in So			
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Soli	-	S	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals i			•
1 - 8 oz glass	4 Deg C	. 14	Days	1 PAH's in Soil	•		
1 - 8 oz glass	None	28	Days	1 TCLP Mercury	in Soil		
Sample Comm	ents:						
(N/A)		38.2 -90.3	0454	N			
		-90.3	9117	ω			

ASR Number:	5198 Sample Numbe	r: 5	QC Co	de: Matri	x: Solid Tag	ID: 5198-5
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply In	nc PA	Pro	oject Manager:	Jamie Bernard-	Drakey
	Crystal City		oumpmi		Missouri	
Program:	, .			State	riissouri .	
_	ROTARY DRILLING SUPP	LY INC	- SITEWI	DE	Site ID: A7X9	Site OU: 00
Location Desc:	Soil sample					
		Extern	nal Samı	ole Number: _	RDS-SB	-5
Expected Conc	(or Circle One	: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Start:	21411	12:45
Longitude:				End:	//	_: _
Laboratory An	alyses:					
Container	Preservative	Holdir	ng Time	Analysis		•
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil	or Sediment	•
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids	by ICP-AES	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in	Soil	
1 - 8 oz glass	4 Deg C	. 14	Days	1 PAH's in Soil by	GC/MS	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury in	n Soil	
Sample Comme		· · · · · · · · · · · · · · · · · · ·	*			The second secon
(N/A)		38	. 204	124. N		
		- 9D.	392	24. N 07 W	-	

ASR Number: !	5198 Sample Num l	per: 6	QC Co	de: Matri	ix: Solid Tag	J ID: 5198-6
Project ID:	JBDA7X900 Rotary Drilling Supply	Inc DA s		oject Manager;	Jamie Bernard	i-Drakey
_	Crystal City	THICL - PM S	ampiing	•	Missouri	
Program:	•					
_	ROTARY DRILLING SU	IPPLY INC -	SITEWI	DE	Site ID: A7X	9 Site OU: 00
Location Desc:	Soil sample					
		Externa	al Samı	ple Number: _	RDS-SE	3-6
Expected Conc	c (or Circle C	ne: Low	Medium	High)	Date	Time(24 hr)
Latitude:	-	Samp	le Coll	ection: Start:	214111	1 <u>3.2</u> 0
Longitude:				End:	_/_/_	_:
Laboratory An	alyses:			<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Container	Preservative	Holding	j Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	-	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in	-	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b	•	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury	in Soil	
Sample Commo	ents:					
(N/A)		38	. 20	701 N 95 W	•	
•		-90	.391	95 W		

ASR Number:	5198 Sample Nu	mber: 7	QC Cod	de: Matı	rix: Solid 1	Tag ID: 5198-7
	Rotary Drilling Sup	ply Inc PA				ard-Drakey
City:	•		•	State	Missouri	
Program: Site Name:	ROTARY DRILLING	SUPPLY INC	- SITEWI	DE	Site ID: A	7X9 Site OU: 00
Location Desc:	Soil sample		,			· · · · · · · · · · · · · · · · · · ·
		Extern	al Samp	le Number:	RDS-	SF-1
Expected Conc	(or Circle	One: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Start:	21411	13.39
Longitude:				End:		Notation of Properties
Laboratory An	alyses:	•	•			
Container	Preservativ e	Holdin	g Time	Analysis		
1 - 8 oz glass	4 Deg C	28		1 Mercury in Soi		
1 8 oz glass	4 Deg C	180		1 Metals in Solid		
1 - 8 oz glass	4 Deg C	180	!	1 TCLP Metals in		
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b	•	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury	in Soil	
Sample Comme	nts:		_			
(N/A)		38, 20 -90, 3	69G	N		
	•	-90. 3	9188	ω		

ASK Number: 5	198 Sample Number:	8 QC C	ode: Matı	ix: Solid Ta	ag ID: 5198-8
Project ID:			oject Manager	: Jamie Berna	rd-Drakey
City: (Rotary Drilling Supply Inc Crystal City	: PA samplin	=	Missouri	
Program: S Site Name: I	ROTARY DRILLING SUPPL	Y INC - SITEW	/IDE	Site ID: A7	X9 Site OU: 00
Location Desc:	• •				
. •	. (External Sam	ple Number:	RDS-S	F-2
Expected Conc:	(or Circle One:	Low Mediur	n High)	Date	Time(24 hr)
Latitude:		Sample Co	llection: Start:	21411	1 <u>3</u> :50
Longitude:		•	End:		:
Laboratory Ana	ilyses:		· · · · · · · · · · · · · · · · · · ·	•	
Container	Preservative	Holding Time	Analysis		
1 - 8 oz glass	4 Deg C	28 Days	1 Mercury in So	l or Sediment	
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solid	is by ICP-AES	
1 - 8 oz glass	4 Deg C	180 Days	1 TCLP Metals in	ı Soil	
1 - 8 oz glass	4 Deg C	14 Days	1 PAH's in Soil b	y GC/MS	
1 - 8 oz glass	None	28 Days	1 TCLP Mercury	in Soil	
Sample Comme	nts:	20 0	- 1 - 1	<u> </u>	,
(N/A)	s ·	38.2	lohou N	·	
		- 90 3	9151 W		

ASR Number: 5	5198 Sample Num	ber: 9	QC Cod	de: Matri	x: Solid Tag	ID: 5198-9
Project ID:				ject Manager:	Jamie Bernard	-Drakey
	Rotary Drilling Supply	y Inc PA	sampling	•		
•	•			State:	Missouri	
Program:	•					
Site Name:	ROTARY DRILLING SU	JPPLY INC	- SITEWI	DE	Site ID: A7X	9 Site OU: 00
Location Desc:	Soil sample					
		Exteri	nal Samp	ole Number: _	RDS-SF	- 3
Expected Conc	(or Circle (One: Low	Medium	High)	Date	Time(24 hr)
Latitude:		San	nple Coll	ection: Start:	21411	14:00
Longitude:				End:	_/_/_	:
Laboratory An	alyses:					
Container	Preservative	Holdi	ng Time	Analysis		•
1 - 8 oz glass	4 Deg C	. 28	3 Days	1 Mercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solids	by ICP-AES.	
1 - 8 oz glass	4 Deg C	180) Days	1 TCLP Metals in	Soil	
1 - 8 oz glass	4 Deg C	14	‡ Days	1 PAH's in Soil by	/ GC/MS	
1 - 8 oz glass	None	28	B Days	1 TCLP Mercury i	n Soil	
Sample Comme	ents:		<i>~</i> (> . 1		
(N/A)	•	38.2	18652	S N	Ÿ	
		38.2 -90.3	927	3 W		•

ASR Number: 5:	198 Sample Numb e	er: 10	QC Coc	le: Matr	ix: Solid	Tag I	D: 5198-10				
Project ID: J	BDA7X900	DA7X900 Project Manager: Jamie Bernard-Drakey									
City: (Rotary Drilling Supply 1 Crystal City	ínc PA	sampling	State	Missouri						
Program: S Site Name: F	Superfund ROTARY DRILLING SUP	PLY INC	- SITEWI	DE	Site ID:	A7X9	Site OU: 00				
Location Desc:	Sediment sample			,			2 .V-4e				
		Exter	nal Samp	ole Number:	RDS-	SD-	.J-CAE				
Expected Conc:	(or Circle Or	ne: Low	Medium	High)	Date	•	Time(24 hr)				
Latitude:		San	nple Coll	ection: Start!	1437 15	11	12:55				
Longitude:				End:			•				
Laboratory Ana	alyses: Preservative	Loldi	ng Time	Analysis	4	•					
Container 1 - 8 oz glass	4 Deg C	2	_	1 Mercury in So	il or Sedimer	nt					
1 - 8 oz glass	4 Deg C	18	0 Days	1 Metals in Soli			:				
Sample Comme	nts:	0:66	(1 ()								
(N/A)	38	. המשל	, , ,	•							
	- 9 ₀ .	. 2695 . 390°	73 W								

ASR Number:	5198 Sample Num	ber: 10	QC Co	de: <u>D</u>	Matrix: Solid	Tag :	ID: 5198-10-
Project ID: Project Desc:		. I DA	Pro	oject Ma	nager: Jamie B	ernard-	Drakey .
City: Program:	Crystal City	y Inc PA :	sampiin	=	State: Missour	i	
Site Name:	ROTARY DRILLING SI	JPPLY INC -	SITEW	IDE	Site ID	: A7X9	Site OU: 00
Location Desc:	Sediment sample				·	0	-
		Extern	al Sam	ple Numt	oer: <u>RDS-</u>	SD-X	FD
Expected Conc	(or Circle (One: Low	Medium	High)	Date		Time(24 hr)
Latitude:		Sam	ple Coll	ection: S	Start: 2/15/	jl.	12:55
Longitude:					End://	_	_:
Laboratory An	-		·		:	· 	
Container	Preservative		g Time	Analysi	is		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercur	y in Soll or Sedime	nt	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals	in Solids by ICP-A	S	
Sample Comme		_					
(N/A)		38,20	551	N			
	•	38,21 90.3	9 2 4 3	(,)			
			, , ,				

ASR Number:	5198 Sample Number	er: 11 QC	Code: Mat	rix: Solid Tag	ID: 5198-11
Project ID:			Project Manager	: Jamie Bernard	I-Drakey
City:	Rotary Drilling Supply I Crystal City	nc PA sampi	_	: Missouri	•
Program: Site Name:	ROTARY DRILLING SUP	PLY INC - SITE	WIDE	Site ID: A7X	9 Site OU: 00
Location Desc:	Sediment sample				4
		External Sa	mple Number:	RDS-SI)-21-4E
Expected Conc	(or Circle On	e: Low Medi	um High)	Date	Time(24 hr)
Latitude:		Sample C	ollection: Start:	2/15/11	13:30
Longitude:	<u> </u>		End:		_: _
Laboratory An	alyses:	Holding Time	e Analysis		
1 - 8 oz glass	4 Deg C	28 Day	_	il or Sediment	
1 - 8 oz glass	4 Deg C	180 Day		•	•
Sample Commo	ents:	_	1		
(N/A)	•	38.20	575 N		
		-an 29	1108 W		

ASR Number: 5	5198 Sample Numb	er: 12 (QC Code:	Matri	ix: Solid Tag	ID: 5198-12
Project ID:			Project	Manager:	Jamie Bernard	-Drakey
	Rotary Drilling Supply	Inc PA sa	mpling			
Program:	Crystal City			State:	Missouri	•
. —	ROTARY DRILLING SUF	PPLY INC - S	ITEWIDE		Site ID: A7X9	Site OU: 00
Location Desc:	Sediment sample					(e
		External	Sample N	lumber:	RDS-SD	-324E
Expected Conc:	(or Circle Or				Date	Time(24 hr)
Latitude:		Sampi	e Collectio	on: Start:	21511	1 <u>3:5</u> 0
Longitude:		. *		End:	_/_/_	•
Laboratory Ana	alyses:					
Container	Preservative .	Holding 1	Time A	nalysis		
1 - 8 oz giass	4 Deg C	28	Days 1 N	dercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days 1 N	1etals in Solids	by ICP-AES	
Sample Comme						
(N/A)		38. 6 -90. 3°	20550	N		
		-90.3	9191	W		

ASR Number: 5	198 Sample Number:	13	QC Cod	le: Matri	x: Solid	ı ag ı	ID: 5198-13
Project ID:				ject Manager:	Jamie Be	rnard-l	Drakey
	Rotary Drilling Supply Inc	PA s	ampling		Minanuri		
•	Crystal City		•	State:	Missouri		
	Superfund ROTARY DRILLING SUPPL	Y INC -	SITEWI	DF	Site ID:	A7X9	Site OU: 00
. Site Name.	KOTAKI DILLLING SOTTE	1 1110	0110111				
Location Desc:	Sediment sample				:		7
		Externa	al Samp	le Number: _	RDS	-SD	-LACAE
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	•	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Start:	2/15/	Ц.	14:20
Longitude:				End:	<u>-</u>	_	:
Laboratory An			_				
Container	Preservative	Holding		Analysis	l a- Cadimar		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi 1 Metals in Solid			
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solic	S DY ICF-AL		
Sample Comme	ents:	•		•			
(N/A)	·	3	8.20	1525 W			,
	·	-9	o. 39	1525 W			

ASR Number:	5198 Sample Number:	14	QC Co	de:	Matr	ix: Solid	Tag I	D: 5198-14
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	PA	Pro	oject Ma	nager:	Jamie Ben	nard-D	Prakey
City:	Crystal City			•	State:	Missouri		•
Program:				•			•	
Site Name:	ROTARY DRILLING SUPPLY	Y INC	- SITEWI	IDE .		Site ID:	A7X9	Site OU: 00
Location Desc:	Sediment sample							8
		exter	nal Samı	ple Num	ber: _	RDS-S	SD -	ge ca e
Expected Conc						Date		Time(24 hr)
Latitude:		San	nple Coll	ection:	Start:	2/15/11	l -	14:30
Longitude:	· ·				End:	_/_/_		_:_
Laboratory An	-			,				· · · · · · · · · · · · · · · · · · ·
Container	Preservative		ng Time	Analy				
1 - 8 oz glass	4 Deg C	28	,-		•	or Sediment		
1 - 8 oz glass	4 Deg C	186	0 Days	1 Metal	s in Solid	s by ICP-AES		
Sample Comme	ents:				0.1			· · · · · · · · · · · · · · · · · · ·
(N/A)			38, 2 90, 30	0523	Ν			
		_	9n 20	4478	W			

ASR Number:	5198 Sample Nun	nber: 15	QC Co	de: Matı	ix: Solid Ta	g ID: 5198-15
Project ID:				ject Manager	: Jamie Bernar	d-Drakey
	Rotary Drilling Suppl Crystal City	ly Inc PA	sampling		Missouri	
Program:	•			State	MISSOUTT	
	ROTARY DRILLING S	UPPLY INC	- SITEWI	DE .	Site ID: A7X	9 Site OU: 00
Location Desc:	Sediment sample	····	:			
		Extern	al Samp	ole Number:	RDS-57	0-9
Expected Conc	(or Circle	One: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Start:	2/15/1	<u>14:45</u>
Longitude:				End:	_/_/_	_:_
Laboratory An	alyses:		•		· · · · · · · · · · · · · · · · · · ·	
Container	Preservative		ıg Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi	l or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	
Sample Comme	ents:					
(N/A)		38.2	2048	/ N	•	
		0- 0	aila	8 W		

ASR Number:	5198 Sample Numb	er: 16	QC Coc	le: Matri	x: Solid T	ag ID: 5198-16
Project ID:				ject Manager:	Jamie Berna	ard-Drakey
_	Rotary Drilling Supply	Inc PA s	ampling		Missouri	
City:	•			State:	Missouri	
Program: Site Name:	Superfund ROTARY DRILLING SU	PPLY INC -	SITEWI	DE	Site ID: A	7X9 Site OU: 00
Location Desc:	Sediment sample		······································			
		Extern	al Samp	le Number: _	RDS-	50-1
Expected Conc	or Circle 0	ne: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Start:	2/15/11	4:18
Longitude:				End:		•
Laboratory An	alyses:	···				
Container	Preservative		g Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	•	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b	y GC/MS	
Sample Commo	ents:			•		
(N/A)	•	38.	206	76 N e W		
		-90.3	.906 L	e W		

ASR Number:	5198 Sample Num l	per: 1/ QC Co	ode: Mati	ix: Solid Tag	J ID: 5198-17
Project ID:			roject Manager:	: Jamie Bernard	l-Drakey
_	Rotary Drilling Supply Crystal City	inc PA samplir		Missouri	
Program:			State.	MISSOUT	
_	ROTARY DRILLING SU	PPLY INC - SITEW	VIDE	Site ID: A7X	9 Site OU: 00
Location Desc:	Sediment sample				
		External San	nple Number:	RDS-	SD-3
Expected Conc	(or Circle C	ne: Low Mediur	m High)	Date	Time(24 hr)
Latitude:		Sample Co	llection: Start:	2/15/11	13:10
Longitude:			End:	_/_/_	:
Laboratory An	_				
Container	Preservative	Holding Time 28 Days	Analysis	i C-dit	
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	28 Days 180 Days	•		· ·
1 - 8 oz glass	4 Deg C	14 Days	•	•	
Sample Commo	ents:		1		
(N/A)		38. 2054	16 N		
		38. 2054 - 90. 3911	Le W		•

ASR Number:	5198 Sample Numb e	er: 18	QC Cod	ie: matr	ix: Solia	rag 1	D: 2198-18
Project ID:				ject Manager:	Jamie Ber	mard-D	Drakey ·
	Rotary Drilling Supply I Crystal City	nc PA S	ampling	State:	Missouri		
Program:				, and the second	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	ROTARY DRILLING SUP	PLY INC -	SITEWI	DE	Site ID:	A7X9	Site OU: 00
Location Desc:	Sediment sample						•
		Externa	al Samp	le Number:	RDS-	SD:	-5
Expected Conc	; (or Circle Or	e: Low	Medium	High)	Date		Time(24 hr)
Latitude:		Samı	ole Colle	ection: Start:	2/5/1	1	1 <u>3:4</u> 0
Longitude:				End:	//_	_	
Laboratory Ar							
Container	Preservative	Holding	•	Analysis	l au Cadimani	1	
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi			
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	-	,	
1 - 8 oz glass	4 Deg C	. 14	Days	1 PAH's in Soil b	IY GC/143		
Sample Comm	ents:					,	
(N/A)		3	8, 2t	556 N			
		-9,	. 29	127			

ASR Number:	5198	Sample Nu	mber: 30	QC C	ode: PE	Matr	ix: Solid	Tag I	D: 5198-30-PE
Project ID:	JBDA7	X900		Pr	oject Ma	nager:	Jamie Beri	nard-D	Prakey
Project Desc:	Rotary	Drilling Supp	oly Inc P	A samplin	ıg				
City:	Crystal	City				State:	Missouri		
Program:	Superf	und				•			
Site Name:	ROTAR	Y DRILLING !	SUPPLY IN	C - SITEW	/IDE		Site ID:	A7X9	Site OU: 00
Location Desc:	CLP Q	ATS PE SAMÉ	PLE: META	ALS & MER	CURY	•			
			Exte	ernal Sam	iple Num	ber: _	·		
Expected Conc	: Low	(or Circle	One: Lo	w Mediur	n High)		Date		Time(24 hr)
Latitude:			· Sa	ample Co	llection:	Start:	01/25/20	11	10:00
Longitude:					•	End:		•	•
Laboratory An	-					_			
Container	P	reservative	Hol	lding Time	Analys				
1 - 8 oz glass		Deg C Deg C		28 Days 180 Days			or Sediment s by ICP-AES		•

QATS ID # MS02470

SAMPLE AND INSTRUCTION SHEETS LEFT IN BACK DOCK REFRIGERATOR TO BE INCLUDED WITH THE FIELD SAMPLES. 12/28/10 RKE

ASR Number: 5	198 Sample Number	101	QC Co	de: Matı	ix: Water Ta	g ID: 5198-101
Project ID: 1	JBDA7X900 Rotary Drilling Supply Inc	PA s		oject Manager:	Jamie Bernar	d-Drakey
	Crystal City		<u>-</u>		: Missouri	
Program: S	·	*				
Site Name:	ROTARY DRILLING SUPPL	Y INC -	SITEWI	DE	Site ID: A7X	(9 Site OU: 00
Location Desc:	Surface water sample					
		Externa	ıl Samı	ole Number:	RDS-S	ω -1
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:	***************************************	Samp	ole Coll	ection: Start:	2/15/11	11:18
Longitude:		•		End:	_/_/_	:
Laboratory Ana	lyses:					······································
Container	Preservative	Holding		Analysis		
	5 mL of HNO3/L to pH<2			1 Mercury in Wa		•
1 - 1 Liter Cubitainer	·	180	Days	1 Metals in Wate	er by ICP/MS	
1 - 128oz amber glass	s 4 Deg C	. 7	Days	1 PAH's in Water	by GC/MS-SIM	
Sample Comme	nts:	· · · · · · · · · · · · · · · · · · ·				
(N/A)		38.	20	676 N oue w		
		-90	. 39	oue w		•

And collected MS/MSD

ASR Number: 51	.98 Sample Number:	102	QC Cod	le: Matri	ix: Water Tag	ID: 5198-102
Project ID: J		· D.A		ject Manager:	Jamie Bernard-	Drakey
•	otary Drilling Supply Inc. Trystal City	PA S	ampung	State	Missouri	•
Program: S	•			State	111350011	•
	OTARY DRILLING SUPPLY	Y INC -	SITEWI	DE ·	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample					
	E	Externa	al Samp	le Number: _	RDS-S	w-3
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sami	ple Coll	ection: Start:	2/15/11	13:10
Longitude:		•		End:	_/_/_	
Laboratory Ana				Anniverse		•
Container 1 - 1 Liter Cubitainer	Preservative 5 mL of HNO3/L to pH<2	Holding 28	Days	Analysis 1 Mercury in Wa	ter	
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days	1 Metals in Wate		
1 - 128oz amber glass	•	7	Days	1 PAH's in Water	by GC/MS-SIM	
Sample Commer	its:					· · · · · · · · · · · · · · · · · · ·
(N/A)			38.	20546	N	
			-90.	20546 39 1/6	W	

ASR Number: 51	98 Sample Number:	103	QC Cod	le: Matr	י ix: Water ו	rag ID: 5198-103
Project ID: J	BDA7X900 otary Drilling Supply Inc	- PΔ s		ject Manager:	Jamie Bern	ard-Drakey
	rystal City	. 173	ampinig	State:	Missouri	
-	uperfund	•			11.050411	
Site Name: R	OTARY DRILLING SUPPL	Y INC -	SITEWI	DE .	Site ID: A	7X9 Site OU: 00
Location Desc: 9	Surface water sample				·	
•	<u>.</u>	Extern	al Śamp	le Number:	RDS-	sw-5
Expected Conc:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude: _		Sam	ple Colle	ection: Start:	2/15/11	/ <u>3 :4</u> 0
Longitude: _			•	End:	_/_/_	_:_
Laboratory Anal	yses:					
Container	Preservative	Holding	y Time	Analysis .		
1 - 1 Liter Cubitainer	5 mL of HNO3/L to pH<2	28	· Days	1 Mercury in Wa	ter	•
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days	1 Metals in Wate	r by ICP/MS	
1 - 128oz amber glass	4 Deg C	7	Days	1 PAH's in Water	by GC/MS-SIM	· ·
Sample Commen	ts:					
(N/A)		38.	205	sle N		
		-90		7 (1)		

ASR Number: 5	5198 Sample Number:	104 QC Code:	matrix: water	lag ID: 5198-104
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	_	lanager: Jamie Bei	rnard-Drakey
•	Crystal City		State: Missouri	
_	Superfund		•	·
Site Name:	ROTARY DRILLING SUPPL	Y INC - SITEWIDE	Site ID:	A7X9 Site OU: 00
Location Desc:	Surface water sample			,
	· · · · · · · · · · · · · · · · · · ·	External Sample Nu	mber: <u>RDS</u>	-Sw-2
Expected Conc	(or Circle One:	Low Medium High)	Date	Time(24 hr)
Latitude:		Sample Collection	: Start: 2/15/1	1 12:55
Longitude:			End://_	
Laboratory An	alyses:	Holding Time Ana	lysis	
1 - 1 Liter Cubitainer		. •	rcury in Water	,
1 - 1 Liter Cubitainer		•	tals in Water by ICP/MS	
Sample Comme	ents:			
(N/A)		38,205	5/ N	
		38.20 ⁵ - 90. 390	,93 W	

ASR Number: 5	5198 Sample Number:	104 QC C	ode: \right 🗎 Ma	trix: Water Tag	ID: 5198-104- <u>P</u>
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	Pr - PA samplin	oject Manage	r: Jamie Bernard-	
City:	Crystal City Superfund	· · · · · · · · · · · · · · · · · · ·	-	e: Missouri	
_	ROTARY DRILLING SUPPLY	Y INC - SITEW	'IDE	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample				
	ŧ	xternal Sam	ple Number:	RDS-SU	N-2-FD
Expected Conc	(or Circle One:	Low Medium	n High)	Date ·	Time(24 hr)
Latitude:	-	Sample Co	lection: Start	: 2/15/11	12:55
Longitude:	<u> </u>	•	End	: _/_/_	_:_
Laboratory An Container 1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer	Preservative 5 mL of HNO3/L to pH<2	Holding Time 28 Days 180 Days	Analysis 1 Mercury in W 1 Metals in Wa		Addition of Personal Addition of the Addition
Sample Comme	ents:	**************************************			
(N/A)	•	3	8.2055/	\	·
		- 9	8.2055/	3 W	

ASR Number:	5198 Sample Number	105 Q	C Code:	Matri	ix: Water Tag I	ID: 5198-105
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	: PA san		t Manager:	Jamie Bernard-l	Drakey
	Crystal City		· , F · · · · · 5	State:	Missouri	
Program:	Superfund			*		. •
Site Name:	ROTARY DRILLING SUPPL	Y INC - SI	ITEWIDE	•	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample			•		
•		External	Sample	Number: _	RDS-SU)-Y
Expected Conc	(or Circle One:	Low Me	edium Hi	gh)	Date	Time(24 hr)
Latitude:		Sample	e Collecti	ion: Start:	2/15/11	13:30
Longitude:				End:		_:_
Laboratory An	alyses:		· · ·			
Container	Preservative	Holding T		\nalγsis	•	
1 - 1 Liter Cubitainer	• • •			Mercury in Wat		
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days 1	Metals in Wate	r by ICP/MS	
Sample Comme	ents:		,	. 1	_	
(N/A)		38,7	2055(ا ملکو	4 E	
· .		38.	20575	5 N 08 W		
		-90,	39/0	8 W	•	

ASR Number: 5	198 Sample Number:	106 QC Coc	le: Matr	ix: Water Tag	ID: 5198-106
Project ID:				Jamie Bernard-	Drakey
City:	Rotary Drilling Supply Inc Crystal City	PA sampling		Missouri	
Program: Site Name:	Superfund ROTARY DRILLING SUPPL	Y INC - SITEWI	DE	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample				
		External Samp	le Number: _	RDS-SW	-6
Expected Conc:	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Colle	ection: Start:	2/15/11	13:50
Longitude:			End:		:
Laboratory Ana	alyses:				
Container	Preservative	Holding Time 28 Days	Analysis 1 Mercury in Wa	tor	
1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer	5 mL of HNO3/L to pH<2 HNO3 to pH<2	180 Days	1 Metals in Wate		
Sample Comme	nts:		ce N	· ·	
(N/A)		38.20	5 20 10		
		- an 391	91 W		

ASR Number: 51	98 Sample Number:	107	QC Code	: Matr	ix: Water Ta	g ID: 5198-107
Project ID: J			-	ect Manager:	Jamie Bernar	d-Drakey
	otary Drilling Supply Inc rystal City	PA sa	impling	State:	Missouri	
Program: S	uperfund			•		•
Site Name: R	OTARY DRILLING SUPPLY	Y INC - 9	SITEWID	. . ,	Site ID: A7X	(9 Site OU: 00
Location Desc: 5	Surface water sample					
. •	. 1	Externa	l Sample	Number: _	RDS-S	SW-7
Expected Conc:	(or Circle One:	Low M	1edium I	High)	Date	Time(24 hr)
Latitude:		Samp	le Collec	2/15/11	14:20	
Longitude:				End:		·
Laboratory Anal						100 - 100 -
Container		Holding		Analysis		
1 - 1 Liter Cubitainer	•		•-	1 Mercury in Wat		
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days	1 Metals in Wate	r by ICP/MS	
Sample Commen				- 4		•
(N/A)	3	38.2	053	7 ~	•	,
	_		062	5 W		

Background Sample.

ASR Number: 5:	198 Sample Number:	108 QC Cod	e: <u> </u>	x: Water Tag	ID: 5198-108
Project ID: J		_	ect Manager:	Jamie Bernard-	Drakey
City: 0	Rotary Drilling Supply Inc. Crystal City	- PA sampling	State:	Missouri	
Program: S Site Name: F	ROTARY DRILLING SUPPLY	INC - SITEWIC	E	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample		 		
	Ex	xternal Sampl	e Number: _	RDS-SW	1-8
Expected Conc:	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Colle	ction: Start:	2/15/11	/ <u>५</u> : <i>3</i> ଧ
Longitude:			End:	//	P *******************************
Laboratory Ana			A		
Container 1 - 1 Liter Cubitainer	Preservative 1 5 mL of HNO3/L to pH<2	Holding Time 28 Days	Analysis 1 Mercury in Wal	er	-
1 - 1 Liter Cubitainer	HNO3 to pH<2	180 Days	1 Metals in Wate	•	
Sample Commer					
(N/A)		38. 2052	23 N		
		90 394	178 W		

Background Sample.

ASR Number: 5	5198 Sample Number: 109	QC Code	: Matri	x: Water lag I	
Project ID:		_	ct Manager:	Jamie Bernard-[Drakey
•	Rotary Drilling Supply Inc Pa	A sampling	State:	Missouri	
Program:	Crystal City		. State.	111330411	
	ROTARY DRILLING SUPPLY IN	C - SITEWIDE	<u>.</u>	Site ID: A7X9	Site OU: 00
		•			
Location Desc:	Surface water sample				
	•	ernal Sample	Number:	ROS-Su	1-9
Expected Conc	(or Circle One: Lo	w Medium H	ligh)	Date	Time(24 hr)
		ample Collec	tion: Start:	2/19/11	.1 <u>4:4</u> 5
		ampic conce	End:		
Longitude:			Ellu.		· .
Laboratory An					
Container		Iding Time	Analysis	har	
1 - 1 Liter Cubitaine	• 111 111 1 1 1	28 Days 180 Days	 Mercury in Wat Metals in Wate 		
1 - 1 Liter Cubitaine	r HNO3 to pH<2 1		1 Metals III Wate	T DY ICI/III	
Sample Commo	ents:		•		
(N/A)	38.	20481	N		
	- 9n	29478	ω	•	

Background Sample.

ASK Number:	5198 Sample Number:	111 QC Code:	Matrix: Water T	ag ID: 5198-111
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	Projec PA sampling	t Manager: Jamie Berna	ard-Drakey
	Crystal City		State: Missouri	
	ROTARY DRILLING SUPPLY	Y INC - SITEWIDE	Site ID: A	7X9 Site OU: 00
Location Desc:	Rinsate sample			
		xternal Sample	Number: RDS	-RB
Expected Conc	(or Circle One:	Low Medium Hi	- ·	Time(24 hr)
Latitude:	·	Sample Collect	ion: Start: 2/14/1	13:18
Longitude:			End://	
Laboratory An	•			
1 - 1 Liter Cubitainer	Preservative 5 mL of HNO3/L to pH<2	_	Analysis Mercury in Water	
1 - 1 Liter Cubitainer	•		Metals in Water by ICP/MS	
Sample Comme	ents:		ı	
(N/A)	Kinsate San	mple		

ASR Number: 5	5198 Sample Numb	er: 112	QC Co	de: FB Ma	trix: Water	Tag ID: 5198-112-FB
Project ID:				-	r: Jamie Bern	ard-Drakey
-	Rotary Drilling Supply	Inc PA s	ampling			
•	•			Stat	e: Missouri	•
_	Superfund					mun et i' ett oo
Site Name:	ROTARY DRILLING SUI	PPLY INC -	SITEWI	DE	Site ID: A	7X9 Site OU: 00
Location Desc:	Field Blank sample					·
		Extern	al Samp	ole Number:	RDS.	-FB
Expected Conc	e (or Circle O				Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Start	: 2/15/11	15:00
Longitude:				Enc	l://_	
Laboratory An	- ·		······································			,
Container	Preservative		g Time	Analysis		•
1 - 1 Liter Cubitainer	•			1 Mercury in \		
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days	1 Metals in W	ater by ICP/MS	
Sample Commo	ents:					
(N/A)	,					

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

LALINGTON TO THE PROPERTY OF T

Jamie Bluna	Print)	<u>'</u>	NAME OF	SURVEY	OR ACTIVITY (My Supply	1					DATE-OF-COLLECTION SHEET
sumil Devila	VA-DVAF	ey	Lotter	4 Drd	ing righty	11	e				DAY MONTH YEAR \ 01 2
CONTENTS OF SHIP	MENT				,						
SAMPLE	CUBITAINER		OF CONTAINERS		VOA SET	. 5	AMI		MED	IA Othe	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER		BOTTLE EDS OF CONT	BOTTLE AINERS PER SAME	BOTTLE	(2 VIALS EA)	ige ge	Soil	Sediment	ğ		(condition of samples upon receipt, other sample numbers, etc.)
5198-1		End OF CORT	HINERS PER SAMI	LE NUMBE	<u> </u>	-	<u> </u>	-	5		
	X						X.	_	Н		
- a							Ш		Ш		, .
- 3											
- 4							T		П		
-5							Π				
-6											
-7			• .								
-8					,						
-9											
-(0		·									
-10-50											1. 1. 1. 1.
- [[
· - A							\perp				· ·
- 13							Ц				
- 4							Ц	Ц	\downarrow		
- 15							Ц				
-6							Ц		\perp		
1, -17							П				
V -13	<i>V</i>			,			丛		_		
									士		
						0-					
			//W	tera			ı				
		Aw									
	4	·	•								
DESCRIPTION OF SH	IPMENT	4		М	ODE OF SHIP						
PIECE(S) CO	INSISTING OF.		BOX(ES)		COMMER	RCIA	L C	ARR	ER:	70	167 6914 5440
2	S); OTHER			_ -	COURIER	l					<u> </u>
					SAMPLEI	H CO	NV	EYEL			(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTOE		DATE	TIME	RECE	VED BY						REASON FOR CHANGE OF CUSTODY
Ina/	ble	2.16-	11 1130	-							
SEALED	UNSEALE				LED		NS	EA	LED	Д	
RELINQUISHED BY	•	DATE	TIME	RECE	VED BY						REASON FOR CHANGE OF CUSTODY
T SEALED	UNSEALE	\sim H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LED	(JNS	<u>se</u> A	LED	Н	
RELINQUISHED BY		DATE	TIME	RECE	IVED BY						REASON FOR CHANGE OF CUSTODY
		\Box		<u></u>	LED		184	SF^	LEC	لــ,	
SEALED	UNSEALE	미		JSEA	LED		אינ	3EA	LEL		

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

Jame Bernard Drakey Rotary Drilling Sypply Sil							C.1.	·		DATE OF COLLECTION SHEET	
			KUTA	14 1)vi	Iling 24	10	4.) ((((DAY MONTH YEAR 2 of 2
CONTENTS OF SHIP	MENT				1					, j	
, SAMPLE		TYPE	OF CONTAINERS		VOA SET	S	AMP		MED	A ;	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER	CUBITAINER	BOTTLE	BOTTLE NERS PER SAMPI	BOTTLE	(2 VIALS EA)	water	Jios	sediment	핗	ji ji	(condition of samples upon receipt, other sample numbers, etc.)
5198-101	X	SENS OF CONTRI	ALING FER GAMPI	E NUMBER	T	X	Ĥ	-	뷥	<u> </u>	
- (02	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					<u> </u>	\vdash		4		No. d City states
						H	_	عمي معاد	Н		Noed SIM detection
· ~ (63						\mathbb{H}			H		1
-[4		·				\mathbb{H}	Н	_	-		limit in all
-104-FD					ļ	Н					
-105						Ш			\dashv		Mater Samples
-106					<u> </u>	Н	Н	_	\dashv		
- (07						Ш		_	\dashv		
-(03)			·	··	ļ	Ш	_	_	\dashv		
-109				·		Ш	\dashv	_	4		
-111						Ш	\dashv	_	4		energy to 2 kg.
-112-FB	V					٧	\dashv	-	+		
	e fra					Ш		_	\perp		
				-		Н	_	_	\downarrow		
							4	4	4		
						0	11	_	4		
			- l		2.1	\mathbb{H}	_	_	4		
				Ne-		Н		4	\dashv		
							_	4	+		
						\sqcup	4	4	_		
		VAC				\sqcup			4		
		W					_		4		
	J					Щ	_	4	\perp		
<u> </u>				· ·	·			\perp			
DESCRIPTION OF SH	IPMENT			W	ODE OF SHI						
PIECE(S) CO	NSISTING OF	(BOX(ES)	2			L C	۱RR	IER:	19	67 (6914 5565 8 1967 6914 5473
3 ICE CHEST(S): OTHER			. -	COURIEI SAMPLE		ועמר	EVE	n		(SHIPPING DOCUMENT NUMBER)
					OAM LL		J11 V				(SHIPPING DOCUMENT NOMBER)
PERSONNEL CUSTOL		DATE	TIME	RECE	VED BY						REASON FOR CHANGE OF CUSTODY
Ah Pe		2-161	1 1130								
SEALED	UNSEALE				LED		UNS	EΑ	LED		
RELINQUISHED BY	•	DATE	TIME	RECEI	VED BY		•				REASON FOR CHANGE OF CUSTODY
Desailer :	UNSEALE	.,,-		SEA	LED		UNS	SEA	LEC	, F	
SEALED RELINQUISHED BY	UNSEALE	DATE	TIME		VED BY						REASON FOR CHANGE OF CUSTODY
				L							
SEALED	UNSEALE			SEA	LED		UN	SEA	LEI	ارد	

a care a service and

APPENDIX F ANALYTICAL RESULTS

United States Environmental Protection Agency Region 7 901 N. 5th Street Kansas City, KS 66101

Date:

Subject: Transmittal of Sample Analysis Results for ASR #: 5198

Project ID: JBDA7X900

Project Description: Rotary Drilling Supply Inc. - PA sampling

From: Michael F. Davis, Chief

Chemical Analysis and Response Branch, Environmental Services Division

To: Jamie Bernard-Drakey

SUPR/ERSB

Enclosed are the analytical data for the above-referenced Analytical Services Request (ASR) and Project. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. Please complete the enclosed Customer Satisfaction Survey and Data Disposition/Sample Release memo for this ASR as soon as possible. The process of disposing of the samples for this ASR will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Data Disposition/Sample Release memo.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295.

Enclosures

cc: Analytical Data File.

Summary of Project Information

ASR Number: 5198

Project Manager: Jamie Bernard-Drakey Org: SUPR/ERSB

Phone: 913-551-7400

Project ID: JBDA7X900

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Location: Crystal City State: Missouri Program: Superfund

Site Name: ROTARY DRILLING SUPPLY INC - SITEWIDE Site ID: A7X9 Site OU: 00

Purpose: Site Preliminary Assessment GPRA PRC: 302DD2C

Explanation of Codes, Units and Qualifiers used on this report

Sample QC Codes: QC Codes identify the type of sample for quality control purpose. **Units:** Specific units in which results are reported.

ug/kg = Micrograms per Kilogram

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

(Blank) = Values have been reviewed and found acceptable for use.

J = The identification of the analyte is acceptable; the reported value is an estimate.

U = The analyte was not detected at or above the reporting limit.

UJ = The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

Sample Information Summary

ASR Number: 5198

Project ID: JBDA7X900

Sample No (QC Code	Matrix	Location Description	External Sample No	Start Date	Start Time	End Date	End Time	Receipt Date
1	_	Solid	RDS-SB-1		02/14/2011	09:37			02/17/2011
2		Solid	RDS-SB-2		02/14/2011	10:15		* *	02/17/2011
3		Solid	RDS-SB-3		02/14/2011	11:05			02/17/2011
4		Solid	RDS-SB-4		02/14/2011	12:10			02/17/2011
5		Solid	RDS-SB-5		02/14/2011	12:45			02/17/2011
6	_	Solid	RDS-SB-6		02/14/2011	13:20			02/17/2011
7		Solid	RDS-SF-1		02/14/2011	13:39			02/17/2011
8	_	Solid	RDS-SF-2		02/14/2011	13:50			02/17/2011
9		Solid	RDS-SF-3		02/14/2011	14:00			02/17/2011
10	_	Solid	RDS-SD-2		02/15/2011	12:55			02/17/2011
10 - F	D	Solid	RDS-SD-2FD/Field Duplicate of sample 10		02/15/2011	12:55			02/17/2011
11	_	Solid	RDS-SD-4		02/15/2011	13:30			02/17/2011
12		Solid	RDS-SD-6		02/15/2011	13:50			02/17/2011
13	_	Solid	RDS-SD-7		02/15/2011	14:20			02/17/2011
14	_	Solid	RDS-SD-8		02/15/2011	14:30			02/17/2011
15		Solid	RDS-SD-9		02/15/2011	14:45			02/17/2011
16	_	Solid	RDS-SD-1		02/15/2011	11:18			02/17/2011
17		Solid	RDS-SD-3		02/15/2011	13:10	•		02/17/2011
18		Solid	RDS-SD-5		02/15/2011	13:40			02/17/2011
101		Water	RDS-SW-1		02/15/2011	11:18			02/17/2011
102		Water	RDS-SW-3		02/15/2011	13:10			02/17/2011
103	_	Water	RDS-SW-5		02/15/2011	13:40			02/17/2011
104		Water	RDS-SW-2		02/15/2011	12:55	-		02/17/2011
104 - F	D	Water	RDS-SW-2FD/Field Duplicate of sample 104		02/15/2011				02/17/2011
105	_	Water	RDS-SW-4		02/15/2011	13:30			02/17/2011
106		Water	RDS-SW-6		02/15/2011	13:50			02/17/2011
107		Water	RDS-SW-7		02/15/2011	14:20			02/17/2011
108		Water	RDS-SW-8		02/15/2011	14:30			02/17/2011
109		Water	RDS-SW-9		02/15/2011	14:45			02/17/2011
111		Water	Rinsate sample		02/15/2011	13:18			02/17/2011
112 - F	В	Water	Field Blank sample		02/15/2011	15:00			02/17/2011

ASR Number: 5198 03/17/2011 **Project ID:** JBDA7X900 Project Desc Rotary Drilling Supply Inc. - PA sampling

Analysis **Comments About Results For This Analysis**

1 Mercury in Soil or Sediment

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Drv

1-__ 2-_ 3-_ 4-_ 5-_ 6-_ 7-_ 8-_ 9-_ 10-_ 10-FD 11-_ 12-_ 13-_ 14-_ 15-_ 16-_ 17-_ 18-_ Samples: 1-__

Comments:

Mercury was UJ-coded in samples -1, -3, -4, and -7 through -17 and mercury was J-coded in samples -2, -5, -6, and -18. Positive results were J-coded and non-detect results were UJ-coded due to low recovery of this analyte (Hq: 0.25 mg/Kq vs 0.27-1.1 mg/Kq) in the performance evaluation (PE) sample. The actual reporting limit for this analyte may be higher than the reported value.

1 Metals in Solids by ICP-AES

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Samples: 1-__ 1-__ 2-_ 3-_ 4-_ 5-_ 6-_ 7-_ 8-_ 9-_ 10-_ 10-FD 11-_ 12-_ 13-_ 14-_ 15-_ 16-_ 17-_ 18-_

Comments:

Slight boron contamination was found in the calibration blanks. Only samples containing this analyte at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limit has been raised to the level found in the sample. Samples affected were: boron in -1.

Cadmium in samples -1, -3 through -5, -8, -9, and -13 through -15 was UJ-coded and cadmium in samples -2, -6, -7, -10, -11, -12, -17, and -18 was J-coded. Positive results within a factor of ten were J-coded and non-detect results were UJ-coded due to negative recoveries of this analyte in the interference check samples (ICS) which was not present in the ICS solution but whose absolute values were greater than the method detection limit (MDL), therefore, a possibility of false negatives exists. The actual reporting limits may be higher than the reported values.

Antimony was UJ-coded in sample -18. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte (Sb: 32% vs 75-125%) in the laboratory matrix spike. The actual reporting limit for this analyte may be higher than the reported value.

Vanadium and zinc were J-coded in sample -18. Although the analytes in question have been positively identified in the sample, the quantitations are an estimate (J-coded) due to ASR Number: 5198

RLAB Approved Analysis Comments

03/17/2011

Project ID: JBDA7X900

Project Desc Rotary Drilling Supply Inc. - PA sampling

Analysis Comments About Results For This Analysis

low recoveries of these analytes (V: 74% and Zn: 74% vs 75-125%) in the laboratory matrix spike. The actual concentrations for these analytes may be higher than the reported values.

Arsenic, barium, boron, chromium, copper, iron, magnesium, manganese, sodium, vanadium, and zinc in sample -18 were J-coded. Although the analytes in question have been positively identified in these samples, the quantitations are an estimate (J-coded) due to the serial dilution percent differences (As: 30.1%, Ba: 17%, B: 25%, Cr: 21%, Cu: 16%, Fe: 24%, Mg: 17%, Mn: 24%, Na: 16%, V: 26%, and Zn: 16%) being above the control limits (15%). The actual concentrations for these analytes may be higher than the reported values.

1	PAH's	in	Soil	bv	GC/MS
Τ.	LVIIS	,,,,	5011	υ,	00,110

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

Samples: 1-__ 2-__ 3-__ 4-__ 5-__ 6-__ 7-__ 8-__ 9-_ 16-_ 17-_ 18-__

Comments:

(N/A)

1 TCLP Mercury in Soil

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3121.23B applied to TCLP extracts

Basis: N/A

Samples: 1-__ 2-__ 3-__ 4-__ 5-__ 6-__ 7-__ 8-__ 9-__

Comments:

1 TCLP Metals in Soil

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3122.3D Applied to TCLP extracts

Basis: N/A

Samples: 1-__ 2-__ 3-__ 4-__ 5-__ 6-__ 7-__ 8-__ 9-_

Comments:

1 Mercury in Water

Lab: Contract Lab Program (Out-Source)

ASR Number: 5198

RLAB Approved Analysis Comments

03/17/2011

Project ID: JBDA7X900

Project Desc Rotary Drilling Supply Inc. - PA sampling

Analysis Comments About Results For This Analysis

Method: CLP Statement of Work

Samples: 101-__ 102-__ 103-__ 104-__ 104-FD 105-__ 106-__

107-__ 108-__ 109-__ 111-__ 112-FB

Comments:

(N/A)

1 Metals in Water by ICP/MS

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-__ 102-__ 103-__ 104-__ 104-FD 105-__ 106-__

107-__ 108-__ 109-__ 111- 112-FB

Comments:

Slight arsenic, boron, cobalt, copper, lead, nickel, and zinc contamination were found in the calibration blanks. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limits have been raised to the levels found in the samples. Samples affected were: arsenic in -104, -104FD, and -111, boron in -107, -108, -109, and -111, cobalt in -101, copper in -101, -102, -104, -104FD, -107, -108, -109, and -111, lead in -102, -104, -104FD, -107, -108, and -111, nickel in -103, -106, -107, -108, -109, and -111, and zinc in -102 through -104FD, -106, -108, and -109.

Negative zinc contamination was found in the preparation blank. Only samples containing this analyte at a level greater than five times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than five times the contamination in the blank have the result J-coded. Samples affected were: zinc in -101 and -107.

1 PAH's in Water by GC/MS-SIM

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-__ 102-__ 103-__

Comments:

Samples -101, -103 and -103 were extracted 1 day past the 7 day extraction holding time. The results for all analytes (no analytes of interest were detected in these samples) were UJ-coded in samples -101, -102 and -103 to indicate that the reporting limit is an estimated value. The actual reporting limit may be higher than the reported value.

ASR Number: 5198

Project ID: JBDA7X900 **Project Desc:** Rotary Drilling Supply Inc. - PA sampling

Analysis/ Analyte	Units	1	2	3	4
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.10 UJ	0.21 J	0.11 UJ	0.16 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	1270	61300	56300	62000
Antimony	mg/kg	5.2 U	7.0 U	6.3 U	8.3 U
Arsenic	mg/kg	3.8	39.2	17.1	50.4
Barium	mg/kg	17.4 U	4270	3950	4300
Beryllium	mg/kg	0.43 U	3.6	3.0	4.0
Boron	mg/kg	12.3 U	538	406	590
Cadmium	mg/kg	0.43 UJ	0.67 J	0.53 UJ	0.69 UJ
Calcium	mg/kg	108000	123000	111000	118000
Chromium	mg/kg	3.0	51.2	33.7	59.1
Cobalt	mg/kg	4.3 U	18.8	13.5	19.3
Copper	mg/kg	4.9	137	105	142
Iron	mg/kg	2950	25300	22100	24200
Lead	mg/kg	38.7	45.2	19.4	56.3
Magnesium	mg/kg	55100	16200	14800	16600
Manganese	mg/kg	65.5	172	149	223
Nickel	mg/kg	5.7	48.3	33.5	50.7
Potassium	mg/kg	682	1780	1410	2080
Selenium	mg/kg	3.0 U	6.0	3.7 U	5.5
Silver	mg/kg	0.87 U	1.2 U	1.1 U	1.4 U
Sodium	mg/kg	434 U	4730	4980	4900
Thallium	mg/kg	2.2 U	2.9 U	2.6 U	3.4 U
Vanadium	mg/kg	4.6	161	129	167
Zinc	mg/kg	16.6	104	62.5	128
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	190 U	240 U	230 U	280 U
Acenaphthylene	ug/kg	190 U	240 U	230 U	280 U
Anthracene	ug/kg	190 U	240 U	230 U	280 U
Benzo(a)anthracene	ug/kg	190 U	240 U	230 U	280 U
Benzo(a)pyrene	ug/kg	190 U	240 U	230 U	280 U
Benzo(b)fluoranthene	ug/kg	190 U	240 U	230 U	280 U
Benzo(g,h,i)perylene	ug/kg	190 U	240 U	230 U	280 U
Benzo(k)fluoranthene	ug/kg	190 U	240 U	230 U	280 U
2-Chloronaphthalene	ug/kg	190 U	240 U	230 U	280 U
Chrysene	ug/kg	190 U	240 U	230 U	280 U
Dibenz(a,h)anthracene	ug/kg	190 U	240 U	230 U	280 U
Fluoranthene	ug/kg	190 U	240 U	230 U	280 U
Fluorene	ug/kg	190 U	240 U	230 U	280 U
Indeno(1,2,3-cd)pyrene	ug/kg	190 U	240 U	230 U	280 U
2-Methylnaphthalene	ug/kg	190 U	240 U	230 U	280 U
Naphthalene	ug/kg	190 U	240 U	230 U	280 U
Phenanthrene	ug/kg	190 U	240 U	230 U	280 U
Pyrene	ug/kg	190 U	240 U	230 U	280 U

03/17/2011

ASR Number: 5198

Analysis/ Analyte	Units	1	2	3	4
1 TCLP Mercury in Soil					
Mercury	mg/L	0.000200 U	0.000200 U	0.000200 U	0.000200 U
1 TCLP Metals in Soil					
Arsenic	mg/L	0.050 U	0.050 U	0.050 U	0.050 U
Barium	mg/L	0.401	1.41	1.61	1.41
Cadmium	mg/L	0.005 U	0.005 U	0.005 U	0.005 U
Chromium	mg/L	0.015 U	0.0918	0.0742	0.0360
Lead	mg/L	0.050 ป	0.050 U	0.050 U	0.050 U
Selenium	mg/L	0.0564	0.0705	0.0756	0.0680
Silver	mg/L	0.025 U	0.025 U	0.025 U	0.025 U

ASR Number: 5198

Project Desc: Rotary Drilling Supply Inc. - PA sampling Project ID: JBDA7X900

Analysis/ Analyte	Units	5	6	7	8
1 Mercury in Soil or Sediment Mercury	mg/kg	0.35 J	0.18 J	0.13 UJ	0.12 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	61100	43000	47200	54800
Antimony	mg/kg	6.9 U	7.0 U	7.6 U	7.2 U
Arsenic	mg/kg	17.8	56.2	18.2	9.8
Barium	mg/kg	4350	2200	3610	3560
Beryllium	mg/kg	3.1	3.9	2.3	2.8
Boron	mg/kg	446	424	423	269
Cadmium	mg/kg	0.58 UJ	0.89 J	0.69 J	0.60 UJ
Calcium	mg/kg	126000	75400	97200	109000
Chromium	mg/kg	39.1	47.9	51.7	27.4
Cobalt	mg/kg	16.7	15.2	12.5	13.6
Copper	mg/kg	122	94.4	117	84.9
Iron	mg/kg	25000	21800	18600	25500
Lead	mg/kg	22.4	58.9	27.9	10.0
Magnesium	mg/kg	17800	10500	13700	14500
Manganese	mg/kg	150	197	125	143
Nickel	mg/kg	41.9	44.8	30.2	34.7
Potassium	mg/kg	1350	2220	1500	1530
Selenium	mg/kg	4.0 U	5.1	4.5 U	4.2 U
Silver	mg/kg	1.2 U	1.2 U	1.3 U	1.2 U
Sodium	mg/kg	4830	3390	5140	4740
Thallium	mg/kg	2.9 U	2.9 U	3.2 U	3.0 U
Vanadium	mg/kg	143	132	121	119
Zinc	mg/kg	73.3	137	80.7	52.8
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	240 U	240 U	260 U	240 U
Acenaphthylene	ug/kg	240 U	240 U	260 U	240 U
Anthracene	ug/kg	240 U	240 U	260 U	240 U
Benzo(a)anthracene	ug/kg	240 U	240 U	260 U	240 U
Benzo(a)pyrene	ug/kg	240 U	240 U	260 U	240 U
Benzo(b)fluoranthene	ug/kg	240 U	240 U	260 U	240 U
Benzo(g,h,i)perylene	ug/kg	240 U	240 U	260 U	240 U
Benzo(k)fluoranthene	ug/kg	240 U	240 U	260 U	240 U
2-Chloronaphthalene	ug/kg	240 U	240 U	260 U	240 U
Chrysene	ug/kg	240 U	240 U	260 U	240 U
Dibenz(a,h)anthracene	ug/kg	240 U	240 U	260 U	240 U
Fluoranthene	ug/kg	240 U	240 U	260 U	240 U
Fluorene	ug/kg	240 U	240 U	260 U	240 U
Indeno(1,2,3-cd)pyrene	ug/kg	240 U	240 U	260 U	240 U
2-Methylnaphthalene	ug/kg	240 U	240 U	260 U	240 U
Naphthalene	ug/kg	240 U	240 U	260 U	240 U
Phenanthrene	ug/kg	240 U	240 U	260 U	240 U
Pyrene	ug/kg	240 U	240 U	260 U	240 U
. ,	- -				

ASR Number: 5198 RLAB Appro

RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900 Project Desc: Rotary Drilling S

Analysis/ Analyte	Units	5	6	7	8
1 TCLP Mercury in Soil					
Mercury	mg/L	0.000200 U	0.000200 U	0.000200 U	0.000200 U
1 TCLP Metals in Soil					
Arsenic	mg/L	0.050 U	0.050 U	0.050 U	0.050 U
Barium	mg/L	1.50	1.66	0.714	2.04
Cadmium	mg/L	0.005 U	0.005 U	0.005 U	0.005 U
Chromium	mg/L	0.0753	0.0770	0.0313	0.0268
Lead	mg/L	0.050 U	0.050 U	0.050 U	0.050 U
Selenium	mg/L	0.0729	0.0793	0.0552	0.0565
Silver	mg/L	0.025 U	0.025 U	0.025 U	0.025 U

Project ID: JBDA7X900

ASR Number: 5198

1 Mercury in Soil or Sediment Mercury	Analysis/ Analyte	Units	9	10	10-FD	11
Mercury Metals in Solids by ICP-AES mg/kg 54000 31000 15900 44700 Aluminum mg/kg 6.1 U 5.3 U 5.5 U 5.3 U Antimony mg/kg 6.1 U 5.3 U 5.5 U 5.3 U Arsenic mg/kg 8.9 20.0 11.4 26.8 Barium mg/kg 2.6 1.7 1.1 2.5 Boron mg/kg 2.6 1.7 1.1 2.5 Boron mg/kg 0.51 U 0.79 J 2.2 0.71 Cadmlum mg/kg 0.51 U 0.79 J 2.2 0.73 Caldium mg/kg 0.51 U 0.79 J 2.2 0.77 J Calcium mg/kg 0.51 U 17900 12300 15000 127000 Choolat mg/kg 11200 11500 1650 1103 Iron mg/kg 138 11.8 21.8 20.3 146.1 Cobalt mg/kg 19.0	1 Mercury in Soil or Sediment					
Aluminum mg/kg 54000 \$31000 \$15900 \$44700 Antimony mg/kg 6.1 \$1.5 \$1 \$1.5 \$1.5 \$1.5 \$1.5 \$1.5 \$1.5		mg/kg	0.11 UJ	0.18 UJ	0.20 UJ	0.19 UJ
Authinium mg/kg 54000 \$31000 \$15900 \$44700 Anttimony mg/kg 6.1 U 5.3 U 5.5 U 5.3 U Arsenic mg/kg 8.9 20.0 11.4 26.8 Barlum mg/kg 3600 2100 780 3050 Beryllium mg/kg 2.6 1.7 1.1 2.5 Boron mg/kg 2.5 10.7 1.1 2.5 Soron mg/kg 2.75 90.9 53.5 193 Cadmium mg/kg 0.51 UJ 0.79 J 2.2 0.77 J Calclum mg/kg 112000 173000 173000 173000 Color mg/kg 112000 173000 173000 173000 Color mg/kg 112000 1730000 173000 173000 173000 173000 173000 173000 173000 173000 1730000 1730000 1730000 1730000 1730000 1730000 173000000 1730000000000	1 Metals in Solids by ICP-AES					
Arsenic mg/kg 8.9 20.0 11.4 26.8 Barium mg/kg 3600 2100 780 3050 Beryllium mg/kg 3600 2100 780 3050 3050 Beryllium mg/kg 2.6 1.7 7 1.1 2.5 1900 3050 3050 3050 3050 3050 3050 3050 3		mg/kg	54000	31000		
Barium mg/kg 3600 2100 780 3050 Beryllium mg/kg 2.6 1.7 1.1 2.5 Boron mg/kg 2.5 9.9 53.5 193 Cadmium mg/kg 0.51 UJ 0.79 J 2.2 0.77 J Calcium mg/kg 12.1 29.4 19.3 46.1 Cobelt mg/kg 13.8 12.8 20.3 14.3 Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 16500 18400 Lead mg/kg 9.0 124 637 62.4 Magnesium mg/kg 1700 15900 14600 18100 Manganese mg/kg 13.8 1510 866 547 Mickel mg/kg 33.0 27.9 31.3 35.5 Potasslum mg/kg 3.5 U 16.5 7.1 9.7 Selenium	Antimony	mg/kg	6.1 U	5.3 U	5.5 U	
Baryllium mg/kg 2.6 1.7 1.1 2.5 Boron mg/kg 2.75 90.9 53.5 193 Cadmium mg/kg 0.51 UJ 0.79 J 2.2 0.77 J Calcium mg/kg 112000 173000 55000 127000 Chromium mg/kg 1138 12.8 2.8 20.3 14.3 Cobalt mg/kg 75.4 88.2 29.5 103 Iron mg/kg 75.4 88.2 96.5 103 Iron mg/kg 9.0 124 637 62.4 Magneslum mg/kg 9.0 124 637 62.4 Magneslum mg/kg 13.0 15900 1600 18100 Manganese mg/kg 13.3 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 3.5 16.5 7.1 9.7	Arsenic	mg/kg	8.9	20.0		
Boron mg/kg 275 90.9 53.5 193 Cadmium mg/kg 0.51 U 0.79 J 2.2 0.77 J Calcium mg/kg 112000 173000 55000 127000 Chromium mg/kg 13.8 12.8 20.3 14.3 Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 16500 18400 Lead mg/kg 19.0 124 637 62.4 Magneslum mg/kg 17200 15900 16500 18400 Magneslum mg/kg 138 1510 866 547 Mickel mg/kg 1338 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Nickel mg/kg 33.5 16.5 7.1 9.7 Nickel mg/kg 33.0 27.9 31.3 35.5 Silver </td <td>Barium</td> <td>mg/kg</td> <td>3600</td> <td>2100</td> <td>780</td> <td></td>	Barium	mg/kg	3600	2100	780	
Cadmium mg/kg 0.51 UJ 0.79 J 2.2 0.77 J Calcium mg/kg 112000 173000 55000 127000 Chromium mg/kg 122.1 29.4 190.3 46.1 Cobalt mg/kg 13.8 12.8 20.3 14.3 Copper mg/kg 13.8 12.8 20.3 14.3 Iron mg/kg 24800 15800 158000 184000 Lead mg/kg 9.0 124 637 62.4 Magnesium mg/kg 17200 15900 14600 181000 Manganese mg/kg 133.0 27.9 31.3 35.5 Mg/kg 138 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Wg/kg 138 1510 866 547 Nickel mg/kg 1300 1250 1110 2040 Selenium mg/kg 1300 1250 1110 2040 Selenium mg/kg 1300 1250 1110 2040 Selenium mg/kg 1300 1250 1110 2040 Selenium mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 1250 1110 2040 Mg/kg 1300 M	Beryllium	mg/kg	2.6	1.7	1.1	
Calcium mg/kg 112000 173000 55000 127000 Chromium mg/kg 22.1 29.4 19.3 46.1 Cobalt mg/kg 13.8 12.8 20.3 14.3 Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 16500 18400 Lead mg/kg 9.0 124 603 62.4 Magnessum mg/kg 138 1510 866 547 Nickel mg/kg 1300 1250 14600 18100 Selenium mg/kg 1300 1250 110 2040 Selenium mg/kg 1300 1250 110 2040 Sodium mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 130 120 U 2.2 U 2.3 U 2.2 U <td>Boron</td> <td>mg/kg</td> <td>275</td> <td>90.9</td> <td></td> <td></td>	Boron	mg/kg	275	90.9		
Chromium mg/kg 22.1 29.4 19.3 46.1 Choalt mg/kg 13.8 12.8 20.3 14.3 Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 16500 18400 Lead mg/kg 9.0 124 637 62.4 Magnesium mg/kg 17200 15900 14600 18100 Manganese mg/kg 138 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 1300 1250 1110 2040 Selenium mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 5310 2770 1140 5350 Thallium mg/kg 5310 2770 1140 5350 Thallium mg/kg 10.0 U 0.89 U 0.91 U 0.88 U Vanadium mg/kg 10.0 T 0.2 U 2.3 U 2.2 U Vanadium Mg/kg 190 U Acenaphthene ug/kg 190 U Acenaphthylene ug/kg 190 U Acenaphthylene ug/kg 190 U Benzo(a)anthracene ug/kg 190 U Benzo(a)pyrene ug/kg 190 U Benzo(a)pyrene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Chrysene ug/kg 190 U	Cadmium	mg/kg	0.51 UJ	0.79 J		
Cobalt mg/kg 13.8 12.8 20.3 14.3 Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 1600 18400 Lead mg/kg 9.0 124 637 62.4 Magnesium mg/kg 17200 15900 14600 18100 Manganese mg/kg 138 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 1300 1250 1110 2040 Selenium mg/kg 130 16.5 7.1 9.7 Silver mg/kg 1.0 0.88 U 0.91 U 0.88 U Sodium mg/kg 1.0 0.89 U 0.91 U 0.88 U Yanadium mg/kg 2.5 U 2.2 U 2.2 U V Vanadium mg/kg 108 76.6 47.1 93.9 Zinc	Calcium	mg/kg	112000	173000		
Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 16500 18400 Lead mg/kg 9.0 124 637 62.4 Magnesium mg/kg 130 15900 14600 18100 Manganese mg/kg 33.0 27.9 31.3 35.5 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 33.0 16.5 7.1 9.7 Selenium mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 2.5 U 2.2 U 0.23 U 2.2 U Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 190 U 4.2 U 2.3 U 2.2 U 2.2 U <td< td=""><td>Chromium</td><td>mg/kg</td><td>€ 22.1</td><td>29.4</td><td>19.3</td><td></td></td<>	Chromium	mg/kg	€ 22.1	29.4	19.3	
Copper mg/kg 75.4 88.2 96.5 103 Iron mg/kg 24800 15800 16500 18400 Lead mg/kg 9.0 124 637 62.4 Magnesium mg/kg 17200 15900 14600 18100 Manganese mg/kg 138 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 33.0 1250 1110 2040 Selenium mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 2.5 U 2.2 U 2.3 U 2.2 U Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 190 U 190 U 190 U 190 U 190 U	Cobalt	mg/kg	13.8	12.8	20.3	
Iron		mg/kg	75.4	88.2	96.5	
Lead mg/kg 9,0 124 637 62.4 62.4 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 62.4 63.7 63		mg/kg	24800	15800	16500	18400
Magnesium mg/kg 17200 15900 14600 18100 Manganese mg/kg 138 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 1300 1250 1110 2040 Selenium mg/kg 1.0 U 0.88 U 0.91 U 0.88 U Sodium mg/kg 5310 27.70 1140 5350 Sodium mg/kg 2.5 U 2.2 U 2.3 U 2.2 U Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 190 U 106 197 117 1 PAH's in Soil by GC/MS 2.9 190 U 4.2 4.2 2.2 U 2.3 U 2.2 U 2.2 U 2.3 U 2.2 U 2.2 U 2.3 U 2.2 U 2.2 U 2.2 U 2.2 U 2.3 U 2.2 U <t< td=""><td></td><td>mg/kg</td><td>9.0</td><td>124</td><td>637</td><td>62.4</td></t<>		mg/kg	9.0	124	637	62.4
Manganese mg/kg 138 1510 866 547 Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 1300 1250 1110 2040 Selenium mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 190 U 197 117 1 PAH's in Soil by GC/MS Acenaphthene ug/kg 190 U 197 117 Acenaphthene ug/kg 190 U 190 U <td< td=""><td></td><td>mg/kg</td><td>17200</td><td>15900</td><td>14600</td><td>18100</td></td<>		mg/kg	17200	15900	14600	18100
Nickel mg/kg 33.0 27.9 31.3 35.5 Potassium mg/kg 1300 1250 1110 2040 Selenium mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.88 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 190 U 106 197 117 1 PAH's in Soil by GC/MS mg/kg 190 U 190 U <td>_</td> <td>mg/kg</td> <td>138</td> <td>1510</td> <td>866</td> <td>547</td>	_	mg/kg	138	1510	866	547
Potassium mg/kg 1300 1250 1110 2040 Selenium mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2.70 1140 5350 Thallium mg/kg 2.5 U 2.2 U 2.3 U 2.2 U Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 13.0 106 197 117 1 PAH's in Soil by GC/MS wg/kg 190 U 190 U 190 U 117 1 PAH's in Soil by GC/MS wg/kg 190 U 190 U 190 U 117 117 1 PAH's in Soil by GC/MS wg/kg 190 U	_	mg/kg	33.0	27.9	31.3	35.5
Selenlum mg/kg 3.5 U 16.5 7.1 9.7 Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 108 76.6 47.1 93.9 Vanadium mg/kg 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0		mg/kg	1300	1250	1110	2040
Silver mg/kg 1.0 U 0.89 U 0.91 U 0.88 U Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 190 U 106 197 117 1 PAH's in Soil by GC/MS 2.2 U 2.3 U 2.2 U 2.3 U 2.2 U Acenaphthene ug/kg 190 U 4.0 U 197 117 Acenaphthylene ug/kg 190 U 4.0 U		mg/kg	3.5 U	16.5	7.1	9.7
Sodium mg/kg 5310 2770 1140 5350 Thallium mg/kg 2.5 U 2.2 U 2.3 U 2.2 U Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 190 U 117		mg/kg	1.0 U	0.89 U	0.91 U	0.88 U
Thallium mg/kg 2.5 U 2.2 U 2.3 U 2.2 U Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 43.0 106 197 117 1 PAH's in Soil by GC/MS ug/kg 190 U 40.0 117 117 1 PAH's in Soil by GC/MS ug/kg 190 U 40.0 40.0 117		mg/kg	5310	2770	1140	5350
Vanadium mg/kg 108 76.6 47.1 93.9 Zinc mg/kg 43.0 106 197 117 1 PAH's in Soil by GC/MS Langham Langham 190 U Langham		mg/kg	2.5 U	2.2 U	2.3 U	2.2 U
Zinc mg/kg 43.0 106 197 117		mg/kg	108	76.6	47.1	93.9
1 PAH's in Soil by GC/MS ug/kg 190 U Acenaphthene ug/kg 190 U Acenaphthylene ug/kg 190 U Anthracene ug/kg 190 U Benzo(a)anthracene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		mg/kg	43.0	106	197	117
Acenaphthene ug/kg 190 U Acenaphthylene ug/kg 190 U Anthracene ug/kg 190 U Benzo(a)anthracene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U						
Acenaphthylene ug/kg 190 U Anthracene ug/kg 190 U Benzo(a)anthracene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U	·	ug/kg	190 U			
Anthracene ug/kg 190 U Benzo(a)anthracene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U	·	ug/kg	190 U			
Benzo(a)anthracene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Benzo(a)pyrene ug/kg 190 U Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Benzo(b)fluoranthene ug/kg 190 U Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U		ug/kg	190 U			
Benzo(g,h,i)perylene ug/kg 190 U Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U		ug/kg	190 U			
Benzo(k)fluoranthene ug/kg 190 U 2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U		ug/kg	190 U			
2-Chloronaphthalene ug/kg 190 U Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U Naphthalene ug/kg 190 U		ug/kg	190 U			
Chrysene ug/kg 190 U Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Dibenz(a,h)anthracene ug/kg 190 U Fluoranthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Fluorenthene ug/kg 190 U Fluorene ug/kg 190 U Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Indeno(1,2,3-cd)pyrene ug/kg 190 U 2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U	Fluorene	ug/kg	190 U			
2-Methylnaphthalene ug/kg 190 U Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Naphthalene ug/kg 190 U Phenanthrene ug/kg 190 U		ug/kg	190 U			
Phenanthrene ug/kg 190 U		ug/kg	190 U			
4.5		ug/kg	190 U			
Pyrene 29/Ng 250 C	Pyrene	ug/kg	190 U			

ASR Number: 5198

RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	9	10	10-FD	11
1 TCLP Mercury in Soil					
Mercury	mg/L	0.000200 U			
1 TCLP Metals in Soil					
Arsenic	mg/L	0.050 U			
Barium	mg/L	4.98			
Cadmium	mg/L	0.005 U			
Chromium	mg/L	0.050 U			
Lead	mg/L	0.050 U			
Selenium	mg/L	0.050 U			
Silver	mg/L	0.025 U			

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	12	13	14	15
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.18 UJ	0.13 UJ	0.18 UJ	0.13 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	11300	7070	6970	4310
Antimony	mg/kg	5,3 U	7.1 U	5.1 U	7.8 U
Arsenic	mg/kg	8.1	3.7	3.1	4.3
Barium	mg/kg	491	65.0	87.2	69.8
Beryllium	mg/kg	0.75	0.60 U	0.50	0.65 U
Boron	mg/kg	28.8	11.9 U	8.6 U	13.0 U
Cadmium	mg/kg	1.0 J	0.60 UJ	0.43 UJ	0.65 UJ
Całcium	mg/kg	90400	1380	2330	75800
Chromium	mg/kg	18.7	10.5	10.7	8.7
Cobalt	mg/kg	7.5	7.1	4.6	6.5 U
Copper	mg/kg	48.8	10.8	33.3	12.2
Iron	mg/kg	15000	10300	8670	9130
Lead	mg/kg	107	12.7	28.7	14.9
Magnesium	mg/kg	10900	1360	1660	3170
Manganese	mg/kg	768	142	140	265
Nickel	mg/kg	17.1	9.2	10.0	9.9
Potassium	mg/kg	1050	693	767	649 U
Selenium	mg/kg	3.1 U	4.2 U	3.0 U	4.5 U
Silver	mg/kg	0.88 U	1.2 U	0.86 U	1.3 U
Sodium	mg/kg	857	595 U	428 U	649 U
Thallium	mg/kg	2.2 U	3.0 U	2.1 U	3.2 U
Vanadium	mg/kg	30.8	23.2	21.2	15.0
Zinc	mg/kg	204	33.9	50.1	46.4

Project ID: JBDA7X900 Project Des	: Rotary Drilling Supply Inc PA sampling
-----------------------------------	--

ASR Number: 5198

Analysis/ Analyte	Units	16	17	18	101
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.18 UJ	0.18 UJ	0.19 J	
1 Metals in Solids by ICP-AES				•	
Aluminum	mg/kg	6270	7670	31200	
Antimony	mg/kg	5.1 U	8.0 U	4.9 UJ	
Arsenic	mg/kg	5.3	6.3	12.4 J	4-
Barium	mg/kg	98.9	719	1310 J	
Beryllium	mg/kg	0.75	0.67 U	1.5	
Boron	mg/kg	8.4 U	23.7	57.9 J	
Cadmium	mg/kg	2.0	0.68 J	0.86 J	
Calcium	mg/kg	14200	205000	103000	
Chromium	mg/kg	11.6	14.5	30.5 J	
Cobalt	mg/kg	16.3	7.6	10.8	
Copper	mg/kg	59.1	69.0	65.1 J	
Iron	mg/kg	13600	8480	17400 J	
Lead	mg/kg	587	239	83.2	
Magnesium	mg/kg	6300	11700	14300 J	
Manganese	mg/kg	792	739	1230 J	
Nickel	mg/kg	20.4	13.1	26.8	
Potassium	mg/kg	546	667 U	1180	
Selenium	mg/kg	3.0 U	4.7 U	2,9 U	
Silver	mg/kg	0.84 U	1.3 U	0.82 U	
Sodium	mg/kg	422 U	667 U	1850 J	
Thallium	mg/kg	2.1 U	3.3 U	2.1 U	
Vanadium	mg/kg	19.7	18.2	59.5 J	
Zinc	mg/kg	183	99.0	156 J	
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	340 U	290 U	380 U	
Acenaphthylene	ug/kg	340 U	290 U	380 U	
Anthracene	ug/kg	340 U	290 U	380 U	
Benzo(a)anthracene	ug/kg	340 U	290 U	380 U	
Benzo(a)pyrene	ug/kg	340 U	290 U	380 U	
Benzo(b)fluoranthene	ug/kg	340 U	290 U	380 U	
Benzo(g,h,i)perylene	ug/kg	340 U	290 U	380 U	
Benzo(k)fluoranthene	ug/kg	340 U	290 U	380 U	
2-Chloronaphthalene	ug/kg	340 U	290 U	380 U	
Chrysene	ug/kg	340 U	290 U	380 U	
Dibenz(a,h)anthracene	ug/kg	340 U	290 U	380 U	
Fluoranthene	ug/kg	340 U	290 U	380 U	
Fluorene	ug/kg	340 U	290 U	380 U	
Indeno(1,2,3-cd)pyrene	ug/kg	340 U	290 U	380 U	
2-Methylnaphthalene	ug/kg	340 U	290 U	380 U	
Naphthalene	ug/kg	340 U	290 U	380 U	
Phenanthrene	ug/kg	340 U	290 U	380 U	
Pyrene	ug/kg	340 U	290 U	380 U	

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	16	17	18	101
1 Mercury in Water Mercury	ug/L				0.20 U
1 Metals in Water by ICP/MS					
Antimony	ug/L				2.0 U
Arsenic	ug/L				1.0 U
Barium	ug/L				108
Beryllium	ug/L				1.0 U
Boron	ug/L		W	4	293
Cadmium	ug/L				1.0 U
Chromium	ug/L				2.0 U
Cobalt	ug/L				1.5 U
Copper	ug/L				2.1 U
Lead	ug/L				9.9
Manganese	ug/L				641
Nickel	ug/L				3.6
Selenium	ug/L				5.0 U
Silver	ug/L				1.0 U
Thallium	ug/L				1.0 U
Vanadium	ug/L				5.0 U
Zinc	ug/L				6.2 J
1 PAH's in Water by GC/MS-SIM					
Acenaphthene	ug/L				0.050 UJ
Acenaphthylene	ug/L				0.050 UJ
Anthracene	ug/L				0.050 UJ
Benzo(a)anthracene	ug/L				0.050 UJ
Benzo(a)pyrene	ug/L				0.050 UJ
Benzo(b)fluoranthene	ug/L				0.050 UJ
Benzo(g,h,i)perylene	ug/L				0.050 UJ
Benzo(k)fluoranthene	ug/L				0.050 UJ
Chrysene	ug/L				0.050 UJ
Dibenz(a,h)anthracene	ug/L				0.050 UJ
Fluoranthene	ug/L				0.050 UJ
Fluorene	ug/L				0.050 UJ
Indeno(1,2,3-cd)pyrene	ug/L				0.050 UJ
1-Methylnaphthalene	ug/L				0.050 UJ
2-Methylnaphthalene	ug/L				0.050 UJ
Naphthalene	ug/L				0.050 UJ
Phenanthrene	ug/L				0.050 UJ
Pyrene	ug/L				0.050 UJ

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	102	103	104	104-FD
1 Mercury in Water					
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	4.0	1.0 U	3.8 U	3.7 U
Barium	ug/L	151	103	148	140
Beryllium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Boron	ug/L	664	156	651	618
Cadmium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Cobalt	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Copper	ug/L	2.9 U	2.0 U	2.7 U	2.6 U
Lead	ug/L	2.0 U	1.0 U	2.4 U	2.6 U
Manganese	ug/L	222	212	282	267
Nickel	ug/L	3.4	2.2 U	3.8	3.6
Selenium	ug/L	7.5	5.0 U	7.0	7.4
Silver	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	ug/L	2.3 U	2.7 U	3.9 U	3.5 U
1 PAH's in Water by GC/MS-SIM					r
Acenaphthene	ug/L	0.050 UJ	0.050 UJ		
Acenaphthylene	ug/L	0.050 UJ	0.050 UJ		
Anthracene	ug/L	0.050 UJ	0.050 UJ		
Benzo(a)anthracene	ug/L	0.050 UJ	0.050 UJ		
Benzo(a)pyrene	ug/L	0.050 UJ	0.050 UJ		
Benzo(b)fluoranthene	ug/L	0.050 UJ	0.050 บม		
Benzo(g,h,i)perylene	ug/L	0.050 UJ	0.050 บม		
Benzo(k)fluoranthene	ug/L	0.050 UJ	0.050 UJ		
Chrysene	ug/L	0.050 UJ	0.050 UJ		
Dibenz(a,h)anthracene	ug/L	0.050 UJ	0.050 UJ		•
Fluoranthene	ug/L	0.050 UJ	0.050 UJ		
Fluorene	ug/L	0.050 UJ	0.050 UJ		
Indeno(1,2,3-cd)pyrene	ug/L	0.050 UJ	0.050 UJ		
1-Methylnaphthalene	ug/L	0.050 UJ	0.050 UJ		
2-Methylnaphthalene	ug/L	0.050 UJ	0.050 UJ		
Naphthalene	ug/L	0.050 UJ	0.050 UJ		
Phenanthrene	ug/L	0.050 UJ	0.050 UJ		
Pyrene	ug/L	0.050 UJ	0.050 UJ		

ASR Number: 5198

RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	105	106	107	108
1 Mercury in Water					
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	29.7	1.0 U	1.0 U	1.0 U
Barium	ug/L	309	95.0	54.7	47.9
Beryllium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Boron	ug/L	4040	119	50.2 U	42.7 U
Cadmium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	ug/L	15.0	2.0 U	2.0 U	2.0 U
Cobalt	ug/L	3.4	1.0 U	1.0 U	1.0 U
Copper	ug/L	23.8	2.0 U	3.1 U	2.2 U
Lead	ug/L	31.1	1.0 U	2.6 U	1.1 U
Manganese	ug/L	421	63.3	88.5	47.5
Nickel	ug/L	14.5	1.7 U	2.4 U	1.8 U
Selenium	ug/L	25.7	5.0 U	5.0 U	5.0 U
Silver	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	51.0	5.0 U	5.0 U	5.0 U
Zinc	ug/L	48.3	2.7 U	7.7 J	3.6 U

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	109	111	112-FB
1 Mercury in Water				
Mercury	ug/L	0.20 U	0.20 U	0.20 U
1 Metals in Water by ICP/MS				
Antimony	ug/L	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	1.0 U	1.4 U	1.0 U
Barium	ug/L	48.8	139	10.0 U
Beryllium	ug/L	1.0 U	1.0 U	1.0 U
Boron	ug/L	38.3 U	33.0 U	10.0 U
Cadmium	ug/L	1.0 U	1.0 U	1.0 U
Chromium	ug/L	2.0 U	9.7	2.0 U
Cobalt	ug/L	1.0 U	1.0 U	1.0 U
Copper	ug/L	2.1 U	6.9 U	2.0 U
Lead	ug/L	1.0 U	1.5 U	1.0 U
Manganese	ug/L	47.9	12.0	1.0 U
Nickel	ug/L	2.3 U	2.4 U	1.0 U
Selenium	ug/L	5.0 U	5.0 U	5.0 U
Silver	ug/L	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	5.0 U	5.0 U	5.0 U
Zinc	ug/L	3.3 U	19.2	. 2.0 U

United States Environmental Protection Agency Region VII 901 N. 5th Street Kansas City, KS 66101

Date: _	
Subject:	Data Disposition/Sample Release for ASR #: 5198
	Project ID: JBDA7X900
	Project Description: Rotary Drilling Supply Inc PA sampling
From:	Jamie Bernard-Drakey SUPR/ERSB
То:	Kaye Dollmann ENSV/CARB
Anal	ve received and reviewed the Transmittal of Sample Analysis Results for the above-referenced ytical Services Request(ASR) and have indicated my findings below by checking one of the s for Data Disposition.
	derstand all samples will be disposed upon receipt of this form, unless samples are requested held. If I do not return this form all samples will be disposed of on
"Cu	LEASED" - Read-only to all Region 7 employees and contractors that have R7LIMS stomer" account. All Samples may be disposed of upon receipt of this form if not requested to neld.
	pject Manager Accessible" - Available on the LAN in R7LIMS for my use only. All Samples may disposed of upon receipt of this form if not requested to be held.
thro	chived" - THIS DATA IS OF A SENSITIVE NATURE. Any future reports must be requested bugh the laboratory. All samples may be disposed of upon receipt of the form if not requested e held.
whi	d Samples - I have determined that the samples need to be held until, after the time they will be disposed of in accordance with applicable regulations. reason for the hold is:
	Samples are associated with a legal proceeding.
	Question/Concern with data - possible reanalysis requested.
	Other:

APPENDIX G

TABLES

TABLE G-1 METALS ANALYTICAL DATA SUMMARY FOR SURFACE AND SUBSURFACE SOURCE SAMPLES RDS SITE FEBRUARY 2011

							#							
		100		1, 194						and the second				
(iji) iji			# A 3/5	神 群	1 m					1				
Aluminum	NE	NE	990,000	77,000	21,700	1,270						Track of		
Antimony	31	NE	410	31	NA	5.2 U	7.0 U	6.3 U	8.3 U	6.9 U	7.0 U	7.6 U	7.2 U	6.1 U
Arsenic	23	0.43	1.6	0.39	6.292	3.8	Z							
Barium	5,500	NE	190,000	15,000	. NA	17.4 U	4,270	3,950	4,300	4,350	2,200	3,610	3,560	3,600
Beryllium	160	NE	2,000	160	NA	0.43 U	3.6	3.0	4.0	3.1	3,9	2.3	2.8	2.6
Boron	7,000	NE	200,000	16,000	NA	12.3 U	538	406	590	446	424	423	269	275
Cadmium	39	NE	800	70	NA	0.43 UJ	0.67 J	0.53 UJ	0.69 UJ	0.58 UJ	0.89 J	0.69 J	0.60 UJ	0.51 UJ
Calcium	NE	NE	NE	NE	25,060	in in			and the		۱۳۰۸ کا در این در در در در در در در در در در در در در	<u> 1226 - 33</u>	W. 20 . 20 .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chromium	230	NE	NE	NE	NA	3.0	51.2	33.7	59.1	39.1	47.9	51.7	27.4	22.1
Cobalt	NE	NE	300	23	NA	4.3 U	18.8	13.5	19.3	16.7	15.2	12.5	13,6	13.8
Copper	NE	NE	41,000	3,100	13.924	4.9	18 e.:							
Iron	NE	NE	720,000	55,000	14,020	2,950								4.
Lead	NE	NE	800	400	71.937	38.7	45.2	19.4	56.3	22.4	58.9	27.9	10.0	9.0
Magnesium	NE	NE	NE	NE	10,950	31s (2)					10,500			5 18 1
Manganese	11,000	NE	23,000	1,800	910.551	65.5	172	149	223	150	197	125	143	138
Mercury	23	NE	43	10	0.018	0.10 UJ		0.11 UJ	0.16 UJ	30 3480	200 A	0.13 UJ	0.12 UJ	0.11 UJ
Nickel	1,600	NE	NE	NE	NA	5.7	48.3	33.5	50.7	41.9	44.8	30.2	34.7	33.0
Potassium	NE	NE	NE	NE	NA	682	1,780	1,410	2,080	1,350	2,220	1,500	1,530	1,300
Selenium	390	NE .	5,100	390	0.227	3.0 U	# 1.0. ·	3.7 U		4.0 U		4.5 U	4.2 U	3.5 U
Silver	390	NE	5,100	390	NA	0.87 U	1.2 U	1.1 U	1.4 U	1.2 U	1.2 U	1.3 U	1.2 U	1.0 U
Sodium	NE	NE	NE	NE	2,250	434 U	k. 🏂	. 30.7	* 38 Br.		7.57 7.13	<u>* 31.71 </u>	All Sections	100
Thallium	NE	NE	NE	NE	NA .	2.2 U	2.9 U	2.6 U	3.4 U	2.9 U	2.9 U	3.2 U	3.0 U	2.5 U
Vanadium	550	NE	5,200	390	NA	4.6	161	129	167	143	132	121	119	108
Zinc	23,000	NE	310,000	23,000	111.795	16.6	104	62.5	70x	73.3	- 10 Y 144	80.7	52.8	43.0

Notes

Bold value indicates a concentration exceeds a benchmark value. Shaded cell indicates a concentration that exceeds the county average for the analyte.

Cancer Risk Screening Concentration from SCDM

ft bgs Feet below ground surface Estimated concentration

mg/kg Milligrams per kilogram NA Not available

Not established RDS Rotary Drilling Supply Reference Dose Screening Concentration from SCDM

RSL Regional screening level (EPA 2010)
SCDM Superfund Chemical Data Matrix (EPA 2004)

Soil Boring
The analyte was not detected at or above the reporting limit U

UI The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
USGS United States Geological Survey (USGS 2010)

. TABLE G-2

TCLP METALS SUMMARY FOR SURFACE AND SUBSURFACE SOURCE SAMPLES RDS SITE FEBRUARY 2011

0.6.0			W	4	7 7					**************************************	Y-THE
							e constitu				41161 54-1 ₀
Arsenic	7440-38-2	5.0	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
Barium	7440-39-3	100.0	0.401	1.41	1.61	1.41	1.50	1.66	0.714	2.04	4.98
Cadmium	7440-43-9	1.0	0.005 U	0.005 U	0.005 U	0,005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chromium	7440-47-3	5.0	0.015 U	0.0918	0.0742	0.0360	0.0753	0.0770	0.0313	0.0268	0.050 U
Lead	7439-92-1	5.0	0.050 U	0.050 U	0.050 U	0,050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
Мегсигу	7439-97-6	0.2	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U
Selenium	7782-49-2	1.0	0.0564	0.0705	0.0756	0.0680	0.0729	0.0793	0.0552	0.0565	0.050 U
Silver	7440-22-4	5.0	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U

Notes:

mg/L

CAS No. Chemical Abstracts Service number

Identification

Milligrams per Liter

Toxicity Characteristic Leaching Procedure
The analyte was not detected at or above the reporting limit
Rotary Drilling Supply U RDS

TABLE G-3

METALS DATA SUMMARY FOR SURFACE WATER SAMPLES
RDS SITE
FEBRUARY 2011

		KYY A		***	** F #						1 ×		
Aller Aller				Arteria.	13.24.36				and the second				
KA,			* 9	15	(i,j,i,j,i,j)			A gaige	r r	gra-			
Antimony	NE '	NE	> 2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	340	150	> 1.0	1.0 U	3.8 U	3.7 U			1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Barium	NE	NE	164.1	108	148	140	151		103	95.0	54.7	47.9	48.8
Beryllium	NE	NE	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1:0 U	1.0 U	1.0 U
Boron	NE	NE	> 50.2						OR Name OF		50.2 U	42.7 U	38.3 U
Cadmium	2.0	0.25	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	NE	NE	> 2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Cobalt	NE	NE	> 1.0	1.5 U	1.0 U	1.0 U	1.0 U	A. A. A. A.	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Соррег	13	9.0	> 3.1	2.1 U	2.7 U	2.6 U	2.9 U	8.7	2.0 U	2.0 U	3.1 U	2.2 U	2.1 U
Lead	65	2.5	>2.6		2.4 U	2.6 U	2.0 U		1.0 U	1.0 U	2.6 U	1.1 U	1.0 U
Manganese	NE	NE	265.5		38 A. St.	4 (17)	222		212	63.3	88.5	47.5	47.9
Mercury	1.4	0.77	> 0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	470	52	> 2.4	and Allertic					2.2 U	1.7 U	2.4 U	1.8 U	2.3 U
Selenium	NE	5.0	> 5.0	5.0 U				1000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Silver	3.2	NE	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Thallium	NE	NE	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	NE	NE	> 5.0	5.0 U	5.0 U	5.0 U	5.0 U	6.000	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	120	120	23.1	6.2 J	3.9 U	3.5 U	2.3 U	Ya an	2.7 U	2.7 U	7.7 J	3.6 U	3.3 U

Notes:

Bold value indicates a concentration exceeds a benchmark value.

Shaded value indicates concentration exceeds three times the highest background level or detection limit if not detected in background.

CCC Criterion Continuous Concentration from SCDM
CMC Critical Maximum Concentration from SCDM

EPA U.S. Environmental Protection Agency

FD Field duplicate ID Identification

Estimated concentration

μg/L Micrograms per liter
NE Not established

RDS Rotary Drilling Supply

SCDM Superfund Chemical Data Matrix (EPA 2004)

SW Surface water

The analyte was not detected at or above the reporting limit

TABLE G-4 METALS DATA SUMMARY FOR SEDIMENT SAMPLES RDS SITE FEBRUARY 2011

20.4\$F-000000000000000000000000000000000000	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	46.5 × 48.6 × 150000000000	Said of the second	State and Control of the State	V-stateabult			1.0000000000000000000000000000000000000			*
4 a 9 %	WAR IN	19/200		Marian (Constitution)) () () () () () () () () () () () () () () (
7/24	Spill Allenge	1030400000	38.64	1986							24. 10000000
4 (1)	A Johnson			And the second	4						
	7										
Aluminum	21,210	6,270		15,900	7,670	-		11,300	7,070	6.970	4.310
Antimony	> 7.8	5.1 U	5.3 U	5.5 U	8.0 U	5.3 U	4.9 UJ	5,3 U	7.1 U	5.1 U	7.8 U
Arsenic	12.9	5.3	S. 1 4	11.4	6.3		12.4 J	8.1	3.7	3.1	4.3
Barium	261.6	98.9		a sector de la	2000 B		12 To 18 A		65.0	87.2	69.8
Beryllium	1.50	0.75		1.1	0.67 U			0.75	0.60 U	0.50	0.65 U
Boron	> 13.0	8.4 U		734 No. 1 1 1 1	100			1 1 1 1 1 1 1	11.9 U	8.6 U	13.0 U
Cadmium	> 0.65	100245							0.60 UJ	0.43 UJ	0.65 UJ
Calcium	227,400	14,200	173,000	55,000	205,000	127,000	103,000	90,400	1,380	2,330	75,800
Chromium	32.1	11.6	29.4	19.3	14.5	100	30.5 J	18.7	10.5	10.7	8.7
Cobalt	21.3	16.3	12.8	20.3	7.6	14.3	10.8	7.5	7.1	4.6	6.5 U
Copper	99.9	59.1	88.2	96.5	69.0	4	65.1	48.8	10.8	33,3	12.2
Iron	30,900	13,600	15,800	16,500	8,480	18,400	17,400 J	15,000	10,300	8,670	9,130
Lead	86.1					62.4	83.2	79.50 ya. M	12.7	28.7	14.9
Magnesium	9,510	6,300					1 1 189		1,360	1,660	3,170
Manganese	795	792			739	547	W. J. C.	768	142	140	265
Mercury	> 0.18	0.18 UJ	0.18 UJ	0.20 UJ	0.18 UJ	0.19 UJ	17 . 33	0.18 UJ	0.13 UJ	0.18 UJ	0.13 UJ
Nickel	30.0	20.4	27.9		13.1		26.8	17,1	9.2	10.0	9.9
Potassium	2,301	546	1,250	1,110	667 U	2,040	1,180	1,050	693	767	649 U
Selenium	> 4.5	3.0 U			4.7 U		2.9 U	3.1 U	4,2 U	3.0 U	4.5 U
Silver	> 1.3	0.84 U	0.89 U	0.91 U	1.3 U	0.88 U	0.82 U	0.88 U	1.2 U	0.86 U	1.3 U
Sodium	> 649	422 U			667 U		4	F4 90	595 U	428 U	649 U
Thallium	> 3.2	2.1 U	2.2 U	2.3 U	3.3 U	2.2 U	2.1 U	2.2 U	3.0 U	2.1 U	3.2 U
Vanadium	69.6	19.7		47.1	18.2		59.5 J	30.8	23.2	21.2	15.0
Zinc	150.3	15 106,000	106		99.0	117	Section 1	Crossin	33.9	50.1	46.4

Notes:

Shaded value indicates concentration exceeds three times the highest background level or detection limit if not detected in background.

EPA U.S. Environmental Protection Agency Field duplicate

Rotary Drilling Supply

FD

SD Sediment sample

ID Identification

U

Estimated concentration

The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

APPENDIX H REMOVAL SITE EVALUATION FORM

SUPERFUND REMOVAL SITE EVALUATION						
I. SITE NAME AND LOCATION:						
NAME: Rotary Drilling Supply, Inc.	3					
ADDRESS OR OTHER LOCATION IDENTIFIER: 1150 S	outh Truman Boulevard					
CITY: Crystal City	vstal City STATE: Missouri ZIP: 63019					
DIRECTIONS TO SITE: From Interstate 55 (I-55) south of The site will be on the right (east) side of the highway. MAP ATTACHED: See Figure 1 with Removal Site Evaluation						
II. PROGRAM CONTACTS:	Wrielininary Assessment	кероп				
REQUESTED BY: Jamie Bernard-Drakey	DATE OF R	EQUEST: 11/08/2010				
AGENCY/OFFICE: U.S. EPA Region 7	<u> </u>					
MAILING ADDRESS: 901 N. 5th Street		i				
CITY: Kansas City	STATE: Kansas	ZIP: 66101				
TELEPHONE: (913) 551-7400	FAX: (913) 551-9400					
EVALUATOR: Ann Marie Pohlman		•				
AGENCY/OFFICE: Tetra Tech EM Inc						
MAILING ADDRESS: 415 Oak Street						
CITY: Kansas City	STATE: Missouri	ZIP: 64106				
TELEPHONE: (816) 412-1741	FAX: (816) 410-1748					
III. REMOVAL SITE EVALUATION CRITERIA [40 C	CFR 300.410(E)]					
IS THERE A RELEASE AS DEFINED BY THE NCP: YES ⋈ or NO □						
EXPLAIN: Metals have been detected in fill materials and nearby surface water and sediment samples at concentrations above three times background levels. (A RELEASE is defined as any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment (including the abandonment of barrels, containers, and other closed receptacles containing any hazardous substances or pollutant or contaminant), but excludes: workplace exposures; engine exhaust emissions; nuclear releases otherwise regulated; and the normal application of fertilizer. For purposes of the NCP, release also means threat of release.)						
IS THE SOURCE A FACILITY OR VESSEL AS DEFINED BY THE NCP: YES or NO						
EXPLAIN: The site is considered a facility as defined by the NCP. (A FACILITY is defined as any building, structure, installation, equipment, pipe or pipeline (including any pipe into a sewer or POTW),						
well, pit, pond, lagoon, impoundment, ditch, landfill, storage container, motor vehicle, rolling stock, or aircraft or any site or area, where a hazardous substance has been deposited, stored, disposed of, or placed, or otherwise come to be located; but does not include any consumer product in consumer use or any vessel. A VESSEL is defined as any description of watercraft or other artificial contrivance used, or capable of being used, as a means of transportation on water other than a public vessel.)						

SUPERFUND REMOVAL SITE EVALUAT	ION
DOES THE RELEASE INVOLVE A HAZARDOUS SUBSTANCE, OR POLLUTANT CONTAMINANT AS DEFINED BY THE NCP:	T OR YES ⊠ or NO □
EXPLAIN: Elevated concentrations of metals were identified in surface water, sediment, an materials at the site.	nd surface and subsurface fill
A HAZARDOUS SUBSTANCE means any substance, element, compound, mixture, solution, hazardous rir pollutant, or imminently hazardous chemical substance or mixture designated pursuant to the CWA The term does not include petroleum products, natural gas, natural gas liquids, liquefied natural gas, and synthetic gas. The definition of POLLUTANT or CONTAMINANT includes, but is not limited to be mixture, including disease-causing agents, which after release into the environment and upon expossissimilation into any organism, either directly from the environment or indirectly by ingestion through be anticipated to cause death, disease, behavioral abnormalities, cancer, genetic mutation, physiological deformations, in such organisms or their offspring. The term does not include petroleum products, natiquefied natural gas, synthetic gas or mixtures of natural and synthetic gas).	A, CERCLA, SDWA, CAA or TSCA. synthetic gas or mixtures of natural a, any element, substance, compound, sure, ingestion, inhalation, or a food chains, will or may reasonably cal malfunctions or physical
IS THE RELEASE SUBJECT TO THE LIMITATIONS ON RESPONSE:	YES 🗌 or NO 🖾
EXPLAIN: There are no limitations on response. (The LIMITATIONS ON RESPONSE provisions of the NCP (40 CFR 300.400(B) states that remova response to a release: of a naturally occurring substance in its unaltered or natural form; from product and result in exposure within, residential buildings or business or community structures; or into public due to deterioration of the system through ordinary use.)	ucts that are a part of the structure of,
DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE:	YES 🛭 or NO 🗌
EXPLAIN: Coal fly ash used as fill material and contaminated surface water and sediment sources of exposure to hazardous substances. Analytical results should be evaluated by EPA whether the levels and extent of contamination present an unacceptable risk to human health warrants further CERCLA response.	A risk assessors to determine
HAS A PRP BEEN IDENTIFIED:	YES ⊠ or NO □
EXPLAIN: Rotary Drilling Supply, Inc. (address of facility below) has been identified as	the PRP.
Rotary Drilling Supply, Inc.	
1150 South Truman Boulevard	
Crystal City, MO 63019	
IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(B)(2)]:	
ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLU OR CONTAMINANTS:	TANTS, YES ⊠ or NO □
EXPLAIN: The potential exists for exposure to elevated levels of metals in surface fill matsurface water and sediment.	terials at the site and in nearby
ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIE	S: YES ☐ or NO ⊠
EXPLAIN: Drinking water in the area is provided by the City of Crystal City. The closest mile east of the site; therefore, contamination of drinking water is unlikely.	known private well is over ½
HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS,OR BULK STORAGE CONTAINERS:	YES □ or NO ⊠
EXPLAIN: No drums, barrels, or bulk storage containers are present.	

SUPERFUND REMOVAL SITE EVALUATION				
HIGH LEVELS OF HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN NEAR-SURFACE SOILS:	YES 🖾 or NO 🗌			
EXPLAIN: Elevated levels of metals have been detected in near-surface fill material at the site.				
CONDITIONS SUSCEPTIBLE TO IMPACT FROM ADVERSE WEATHER CONDITIONS:	YES 🛛 or NO 🗌			
EXPLAIN: Heavy rainfall could promote contaminated runoff from the coal fly ash fill material.				
THREAT OF FIRE OR EXPLOSION:	YES 🗌 or NO 🖂			
EXPLAIN: No threat of fire or explosion exists at the site.				
POTENTIAL FOR OTHER FEDERAL OR STATE RESPONSE MECHANISMS:	YES 🗌 or NO 🖂			
EXPLAIN : It is not anticipated that other federal or state agencies would be involved with removal a	ctivities at the site.			
OTHER SITUATIONS OR FACTORS WHICH POSE A THREAT:	YES 🗌 or NO 🗵			
EXPLAIN: No other situations or factors exist that could pose a threat.				
V. POTENTIAL REMOVAL ACTIONS [40 CFR 300.415(D)]:				
(NOTE: The following identifies potential removal actions which may be determined to be appropriate and study. The proposed actions should be considered preliminary proposals and are subject to change.)	pending further review			
SITE SECURITY:	YES 🛛 or NO 🗌			
EXPLAIN: The site is not fenced. Fencing may protect the general public from areas of contamination	on.			
STABILIZATION OR REMOVAL OF SURFACE IMPOUNDMENTS:	YES 🗌 or NO 🖂			
EXPLAIN: No surface impoundments exist at the site.				
CAPPING OF CONTAMINATED SOIL:	YES 🛛 or NO 🗌			
EXPLAIN: Surface fill material containing elevated levels of metals has been identified at the site. C would minimize the threat of exposure.	Capping the material			
USE OF CHEMICALS TO CONTROL/RETARD SPREAD OF CONTAMINATION:	YES 🗌 or NO 🖂			
EXPLAIN: Chemical stabilization would not likely be used to control the spread of contamination at Supply site.				
CONTAMINATED SOIL EXCAVATION:	YES 🖾 or NO 🗌			
EXPLAIN: The coal fly ash fill material could be removed by excavation.				
REMOVAL OF DRUMS, TANKS, OR BULK STORAGE CONTAINERS:	YES 🗌 or NO 🗵			
EXPLAIN: No drums, tanks, or bulk storage containers are present at the coal fly ash fill site.				
CONTAINMENT, TREATMENT, OR DISPOSAL OF HAZARDOUS SUBSTANCES, POLLUTANTS,OR CONTAMINANTS:	YES 🖾 or NO 🗌			
EXPLAIN : Containment, treatment, or disposal of contaminated fill at the site may be required.	· 			
PROVIDE ALTERNATIVE WATER SUPPLIES:	YES 🗌 or NO 🗵			
EXPLAIN: Since the City of Crystal City provides drinking water to the Rotary Drilling Supply site, provide alternative water supplies. No nearby private wells suspected to be contominated.	it is not necessary to			

NOT A HAZARDOUS SUBSTANCE OR POLLUTANT OR CONTAMINANT INSUFFICIENT QUANTITY OR CONCENTRATION MMENT: REMOVAL RECOMMENDED [EMERGENCYTIME-CRITICALNO e one or more of the conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT CONTAMINATED OR CONTAMINATES DRUMS, BARRELS OR CONTAINERS NO OTHER RESPONSE MECHANISM INTITY ON OTHER RESPONSE MECHANISM SITE SECURITY DRAINAGE CONTROL IM REMOVAL OF DRUMS, BARRELS, SOIL CAPPING SO CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINANTS X NO OTHER RESPONSE MECHANISM INTITY ON OTHER RESPONSE OF CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINANTS X NO OTHER RESPONSE NO OTHER RESPONSE MECHANISM INTITY ON OTHER RESPONSE NO	ION		
c one or more of the criteria from SECTION III. REMOVAL SITE EVALUATION CRITERIA, as the bit NOT A RELEASE NOT A HAZARDOUS SUBSTANCE OR POLLUTANT OR CONTAMINANT INSUFFICIENT QUANTITY OR CONCENTRATION MMENT: REMOVAL RECOMMENDED [EMERGENCYTIME-CRITICALNO et one or more of the conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT CCONTAMINANTS CONTAMINATED DRINKING WATER NO OTHER RESPONSE MECHANISM DRUMS, BARRELS OR CONTAINERS NO OTHER RESPONSE MECHANISM SITE SECURITY DRAINAGE CONTROL MMENTED BY WASTES MEMOVAL OF DRUMS, BARRELS, SOIL CAPPING SOUNTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ALDITIONAL REMOVAL SITE EVALUATION RECOMMENDED CONTAMINANTS CONTAMINANTS CHEMICAL CONTROLS ALL CONTROLS ALL CONTAMINANTS ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED CONTAMINANTS CONTAMINATS CONTAMINATS CONTAMINATS CON	ELIMINARY ASSESSMEN		
NOT A RELEASE NOT A HAZARDOUS SUBSTANCE OR POLLUTANT OR CONTAMINANT INSUFFICIENT QUANTITY OR CONCENTRATION MMENT: REMOVAL RECOMMENDED [EMERGENCYTIME-CRITICALNO e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL a removal action be conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER	D		
NOT A HAZARDOUS SUBSTANCE OR POLLUTANT OR CONTAMINANT INSUFFICIENT QUANTITY OR CONCENTRATION MMENT: REMOVAL RECOMMENDED [EMERGENCYTIME-CRITICALNO e one or more of the conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT CONTAMINATED OR CONTAMINATES DRUMS, BARRELS OR CONTAINERS NO OTHER RESPONSE MECHANISM INTITY ON OTHER RESPONSE MECHANISM SITE SECURITY DRAINAGE CONTROL IM REMOVAL OF DRUMS, BARRELS, SOIL CAPPING SOIL CAPPING SOIL CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ALDITIONAL REMOVAL SITE EVALUATION RECOMMENDED TO ONE of more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL MEMBERS AND CONTAMINANTS ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED TO ONE of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL MEMBERS AND CONTAMINANTS EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR X ADDITIONAL REMOVAL MEMBERS AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X NO OTHER RESPONSE AND CONTAMINANTS X DRAINAGE CONTROL IMPORTANT OF THE PROPERTY OF T	basis for the above determination.)		
NOT A HAZARDOUS SUBSTANCE OR POLLUTANT OR CONTAMINANT LII	NOT A FACILITY OR VESSEL		
IDENTIFICIENT QUANTITY OR CONCENTRATION IDENTIFICIENT QUANTITY OR CONCENTRATION IDENTIFICIAL	SUBJECT TO RESPONSE LIMITATIONS		
REMOVAL RECOMMENDED [EMERGENCYTIME-CRITICALNO e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL a removal action be conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS	WILLING/CAPABLE PRP IDENTIFIED		
e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL a removal action be conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT COMBOUNDED CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT COMBOUNDED CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT COMBOUNDED CONTAMINATED DRINKING WATER MECHANISM INTITY ON OTHER RESPONSE MECHANISM INTITY DRAINAGE CONTROL IMMEMOVAL OF DRUMS, BARRELS, SOIL CAPPING SOIL CAPPING SOIL CONTAINTREAT/DISPOSE OF CHEMICAL CONTROLS ALL MALE CONTROLS ALL MALE CONTROLS ALL MALE CONTAMINATES CONTAMINANTS CONTAMINANTS CONTAMINANTS FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINANTS TO CONTAMINANTS TO CONTAMINANTS TO CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINANTS TO CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINATED CONTAMINATED CONTAMINATED CONTAMINATED CONTAMINATED CONTAMINATED TO THE RESPONSE MECHANISM OF THE PROPERTY OF THE P			
e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL a removal action be conducted.) EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT COMBOUNDED CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT COMBOUNDED CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT COMBOUNDED CONTAMINATED DRINKING WATER MECHANISM INTITY ON OTHER RESPONSE MECHANISM INTITY DRAINAGE CONTROL IMMEMOVAL OF DRUMS, BARRELS, SOIL CAPPING SOIL CAPPING SOIL CONTAINTREAT/DISPOSE OF CHEMICAL CONTROLS ALL MALE CONTROLS ALL MALE CONTROLS ALL MALE CONTAMINATES CONTAMINANTS CONTAMINANTS CONTAMINANTS FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINANTS TO CONTAMINANTS TO CONTAMINANTS TO CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINANTS TO CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X COMBOUNDED CONTAMINATED CONTAMINATED CONTAMINATED CONTAMINATED CONTAMINATED CONTAMINATED TO THE RESPONSE MECHANISM OF THE PROPERTY OF THE P	ON-TIME-CRITICAL]		
EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER DRUMS, BARRELS OR CONTAINERS MECHANISM NO OTHER RESPONSE MECHANISM OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM NO OTHER RESPONSE MECHANISM PREMOVAL ACTIONS WHICH MAY BE AP SOIL CAPPING SOIL CAPPING SOIL CAPPING CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS AL ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED The one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL MEMBER OF M			
CONTAMINANTS CONTAMINATED DRINKING WATER DRUMS, BARRELS OR CONTAINERS Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE AP SECTION OF DRUMS, BARRELS, ETC. CONTAIN/TREAT/DISPOSE OF ONE OF THE SECURITY OF THE SECTION			
DRUMS, BARRELS OR CONTAINERS DRUMS, BARRELS OR CONTAINERS NO OTHER RESPONSE MECHANISM OTMECHANISM DRIFT OF THE PROPOSE OF SECTION V. REMOVAL ACTIONS WHICH MAY BE APER OF THE PROPOSE OF SOIL CAPPING ETC. CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ALL ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL MEMORIAL SITE EVALUATION RECOMMENDED EXAMPLE OF THE PROPOSE OF SECTION OF THE PROPOSE OF THE PROPOSE OF SECTION O	DVERSE WEATHER IMPACTS		
DRUMS, BARRELS OR CONTAINERS MECHANISM MECHANISM OI Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE AP IS of response actions which are recommended.) SITE SECURITY DRAINAGE CONTROL IM REMOVAL OF DRUMS, BARRELS, ETC. CONTAIN/TREAT/DISPOSE OF WASTES CHEMICAL CONTROLS AL MMENT: ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED The one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL SITE EVALUATION RECOMMENDED TO ONTAMINANTS EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINATED DRINKING WATER TO OTHER RESPONSE MECHANISM OI Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE AP TO OTHER SECURITY X DRAINAGE CONTROL IM REMOVAL OF DRUMS, BARRELS, ETC. X CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS AL OI CHEMICAL CONTROLS	ONTAMINATED SOIL		
SITE SECURITY REMOVAL OF DRUMS, BARRELS, ETC. CONTAIN/TREAT/DISPOSE OF WASTES MMENT: ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL memending that additional site evaluation be performed.) X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINANTS TOTAL DRUMS, BARRELS OR CONTAINERS X NO OTHER RESPONSE MECHANISM Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE APPLY OF THE PROPERTY OF THE PR	THER FACTORS		
SITE SECURITY REMOVAL OF DRUMS, BARRELS, ETC. CONTAIN/TREAT/DISPOSE OF WASTES MMENT: ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL ommending that additional site evaluation be performed.) X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER DRUMS, BARRELS OR CONTAINERS X NO OTHER RESPONSE MECHANISM OTHER OF THE PROPERTY OF	PPROPRIATE, as examples of the		
REMOVAL OF DRUMS, BARRELS, ETC. CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS ALL MMENT: ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL DISTRICT OF THE ARCHITICAL CONTROLS X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X	MPOUNDMENT STABILIZATIO		
WASTES MMENT: ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL manner ding that additional site evaluation be performed.) X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREA	OIL EXCAVATION		
ADDITIONAL REMOVAL SITE EVALUATION RECOMMENDED e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL manufal that additional site evaluation be performed.) X	LT, DRINKING WATER SUPPLI		
e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL Immending that additional site evaluation be performed.) X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINATED DRINKING WATER NO OTHER RESPONSE MECHANISM Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE APPLY OF THE SECURITY X DRAINAGE CONTROL IMMEDIATE SECURITY X DRAINAGE CONTROL IMMEDIATE SECURITY X SOIL CAPPING X			
e one or more of the conditions or factors from Section IV. CONDITIONS TO WARRANT A REMOVAL Immending that additional site evaluation be performed.) X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS CONTAMINATED DRINKING WATER FIRE/EXPLOSION THREAT X CONTAMINATED DRINKING WATER NO OTHER RESPONSE MECHANISM Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE APPLY OF THE SECURITY X DRAINAGE CONTROL IMMEDIATE SECURITY X DRAINAGE CONTROL IMMEDIATE SECURITY X SOIL CAPPING X			
X EXPOSURE TO HAZARDOUS SUBSTANCES OR POLLUTANTS OR CONTAMINANTS			
CONTAMINANTS CONTAMINATED DRINKING WATER CONTAMINATED DRINKING WATER DRUMS, BARRELS OR CONTAINERS THIS OF THE PROPERTY OF	L ACTION, as a basis for		
DRUMS, BARRELS OR CONTAINERS X NO OTHER RESPONSE MECHANISM Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE AFTER SECURITY X DRAINAGE CONTROL IM REMOVAL OF DRUMS, BARRELS, X SOIL CAPPING X SO TO CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS AL CONTROLS AL CHEMICAL CONTROLS	DVERSE WEATHER IMPACTS		
DRUMS, BARRELS OR CONTAINERS X MECHANISM Intify one or more of the removal actions listed in Section V. REMOVAL ACTIONS WHICH MAY BE AFTER SECURITY X DRAINAGE CONTROL IMPROVAL OF DRUMS, BARRELS, ETC. X CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS	ONTAMINATED SOIL		
x SITE SECURITY X DRAINAGE CONTROL IM REMOVAL OF DRUMS, BARRELS, ETC. X SOIL CAPPING X SO CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS	THER FACTORS		
X SITE SECURITY X DRAINAGE CONTROL IM	PPROPRIATE, as examples of the		
REMOVAL OF DRUMS, BARRELS, X SOIL CAPPING X SO ETC. X CONTAIN/TREAT/DISPOSE OF CHEMICAL CONTROLS AI	MPOUNDMENT STABILIZATIO		
84 X L LOHEMICAL CUNTROLS L L	OIL EXCAVATION		
22	ALTERNATIVE DRINKING WA SUPPLIES		
MMENT: Analytical results should be evaluated by EPA risk assessors to determine whe			
tamination at the site present an unacceptable risk to human health and the environment th	hat warrants a removal action		
ential activities that may be conducted if a removal action is necessary include installation	n of restrictive fencing to prev		
osure to fly ash fill material, and excavation, capping, or treatment of approximately 136,1 perty.	,111 yd' of fly ash on the site		

SUPERFUND REMOVAL SITE EVALUATION				
VII.	ADDITIONAL INFORMATION OR COMMENTS:			
	•			
養力				
VIII.	CERTIFICATION			
	IATURE:	DATE:		
	TION/TITLE:			

SUPERFUND REMOVAL SITE EVALUATION

(Supplemental Waste Inventory Sheet)

IX. HAZARDOUS SUBSTANCES, POLLUTANTS OR CONTAMINANT INFORMATION: MATERIAL DESCRIPTION CONTAINER INFORMATION						
MATERIAL DESCRIPTION		CON	TAINER		TION	
TRADE NAME/ACTIVE INGREDIENTS	NUMBER of CONTAINERS	SIZE	ТҮРЕ	SOLID or LIQUID	% FULL	CONDITION
		,				
				-		
			<u> </u>			
				<u>.</u>		
		<u> </u>		ļ <u>.</u>		
					<u> </u>	<u>'</u>
			<u> </u>		\\.	
				<u> </u>		
					<u> </u>	
-						
	<u> </u>					
		1				
		†	†			
				<u> </u>		
	 		 			
	_	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>